Multiple Holomorphs and Isomorphism Classes Of Hopf-Galois Structures on Dihedral Extensions

Timothy Kohl
Boston University

May 30, 2019

This is joint work with
Robert Underwood - Auburn University Montgomery

Hopf-Galois Theory

An extension L / K is Hopf-Galois if there is a K-Hopf algebra H and a K-algebra homomorphism $\mu: H \rightarrow \operatorname{End}_{K}(L)$ such that

- $\mu(a b)=\sum_{(h)} \mu\left(h_{(1)}(a) \mu\left(h_{(2)}\right)(b)\right.$
- $L^{H}=\{a \in L \mid \mu(h)(a)=\epsilon(h) a \forall h \in H\}=k$
- μ induces $I \otimes \mu: L \# H \xrightarrow{\cong} \operatorname{End}_{K}(L)$

As is known, the Hopf-Galois structures on a Galois extension L / K with $G=G a l(L / K)$ are in 1-1 correspondence with the regular subgroups $N \leq B=\operatorname{Perm}(G)$ such that $\lambda(G) \leq \operatorname{Norm}_{B}(N)$, where the Hopf algebra which acts is $H_{N}=(L[N])^{\lambda(G)}$ the fixed ring under the simultaneous action of G on scalars and on N.

This implies that $|N|=|G|$ but does not necessarily force N to be isomorphic to G, and indeed we may define

$$
\begin{aligned}
R(G) & =\left\{N \leq B \mid N \text { regular and } \lambda(G) \leq \operatorname{Norm}_{B}(N)\right\} \\
R(G,[M]) & =\{N \in R(G) \mid N \cong M\}
\end{aligned}
$$

where $[M]$ represents any group of cardinality $|G|$.

Here however, we will, in fact, consider $R(G,[G])$ as this includes some primordial examples of the N which may arise.

For all G, we have $N=\rho(G) \in R(G,[G])$ since $\lambda(G)$ centralizes $\rho(G)$ and thus certainly normalizes it, where $H_{\rho(G)} \cong K[G]$ the group ring, i.e. the canonical action by virtue of G being the Galois group of L / K.

If G is non-abelian then $\lambda(G) \neq \rho(G)$ and since $\lambda(G)$ obviously normalizes itself we have $\lambda(G) \in R(G,[G])$ where $H_{\lambda(G)}=H_{\lambda}$ is the so-called canonical non-classical structure.

The relationship we focus on, as exemplified by $\lambda(G)$ and $\rho(G)$, is that

$$
\operatorname{Norm}_{B}(\rho(G))=\operatorname{Norm}_{B}(\lambda(G))=\operatorname{Hol}(G)
$$

which leads to the discussion of the multiple holomorph of G.

For $\lambda(G) \leq B=\operatorname{Perm}(G)$, one can ask for what other regular subgroups $N \leq B$ have the same normalizer, (holomorph) as G, namely $\operatorname{Hol}(N)=\operatorname{Hol}(G)$.

The equality implies that $N \leq \operatorname{Hol}(G)$ and $\lambda(G) \leq \operatorname{Hol}(N)$.
If we restrict our attention to those N which are isomorphic to G then N is a conjugate of $\lambda(G)$ by regularity.

So for such an N, where $\tau \in B$ is such that $\tau \lambda(G) \tau^{-1}=N$ then

$$
\begin{aligned}
\tau \operatorname{Norm}_{B}(\lambda(G)) \tau^{-1} & =\operatorname{Norm}_{B}\left(\tau \lambda(G) \tau^{-1}\right) \\
& =\operatorname{Norm}_{B}(N) \\
& =\operatorname{Norm}_{B}(\lambda(G))
\end{aligned}
$$

which means $\tau \in \operatorname{Norm}_{B}(\operatorname{Hol}(G))$, and the converse is true as well.

Let us make a few definitions:

$$
\begin{aligned}
& N H o l(G)=\operatorname{Norm}_{B}(\operatorname{Hol}(G))=\operatorname{Norm}_{B}\left(\operatorname{Norm}_{B}(\lambda(G))\right) \\
& \text { the multiple holomorph of } G \\
& T(G)=N H o l(G) / \operatorname{Hol}(G) \\
& \mathcal{H}(G)=\{N \text { regular } \mid N \cong G \text { and } \operatorname{Hol}(N)=\operatorname{Hol}(G)\}
\end{aligned}
$$

We observe that $\mathcal{H}(G) \subseteq R(G,[G])$, and the virtue of this is that $\mathcal{H}(G)$ (for many different G) may be readily enumerated.

We have the following basic fact(s) about $T(G)$ and $\mathcal{H}(G)$.

Proposition

Given the above definitions:

$$
\begin{aligned}
\operatorname{Orb}_{T(G)}(\lambda(G)) & =\mathcal{H}(G) \\
& =\{N \text { regular } \mid N \cong G \text { and } N \triangleleft H o l(G)\} \\
& =O r b_{T(G)}(N) \text { for any } N \in \mathcal{H}(G)
\end{aligned}
$$

and in particular $|T(G)|=|\mathcal{H}(G)|$.

The multiple holomorph of finite abelian groups was determined by G.A. Miller [4] in the early 1900's and what was utlimately discovered was that $|T(G)|$ is trivial if G has odd order, and $|T(G)| \leq 4$ in general.

Indeed, for many groups $|T(G)|=2$, i.e. $\mathcal{H}(G)=\{\lambda(G), \rho(G)\}$, for example, if G is a non-abelian simple group, or complete.

Since then $T(G)$ has been computed for other classes of groups, by Caranti for perfect groups [1], and p-groups of class two [2], and the presenter [3] for the case of dihedral groups.

And indeed, for our discussion, we shall focus on the case where $G \cong D_{n}$.

We examine the case where $G \cong D_{n}$ for $n \geq 3$ since both $\mathcal{H}(G)$ and $T(G)$ are worked out in detail in [3].

We present the n-th dihedral group as follows:

$$
\begin{aligned}
D_{n} & =\left\{x, t \mid x^{n}=1, t^{2}=1, x t=t x^{-1}\right\} \\
& =\left\{1, x, x^{2}, \ldots, x^{n-1}, t, t x, t x^{2}, \ldots, t x^{n-1}\right\}
\end{aligned}
$$

and we also have a presentation of $\operatorname{Aut}\left(D_{n}\right)$.

Proposition

For $n \geq 3$ with $D_{n}=\left\{t^{a} x^{b} \mid a \in \mathbb{Z}_{2} ; b \in \mathbb{Z}_{n}\right\}$ and letting $U_{n}=\mathbb{Z}_{n}^{*}$,
(a) $\operatorname{Aut}\left(D_{n}\right)=\left\{\phi_{i, j} \mid i \in \mathbb{Z}_{n} ; j \in U_{n}\right\}$ where

$$
\begin{aligned}
\phi_{i, j}\left(t^{a} x^{b}\right) & =t^{a} x^{i a+j b} \\
\phi_{i_{2}, j_{2}} \circ \phi_{i_{1}, j_{1}} & =\phi_{i_{2}+j_{2} i_{1}, j_{2} j_{1}} \\
\phi_{(0,1)} & =I \quad \text { the identity }
\end{aligned}
$$

(b) $\operatorname{Aut}\left(D_{n}\right) \cong \operatorname{Hol}\left(\mathbb{Z}_{n}\right)$

The groups in $\mathcal{H}\left(D_{n}\right)$ are subgroups of $\operatorname{Hol}\left(D_{n}\right)$ where typical elements have the form

$$
\left(t^{a} x^{b}, \phi_{i, j}\right)
$$

and if we make the identification $\rho\left(t^{i} x^{j}\right)=\left(t^{i} x^{j}, I\right) \in \operatorname{Hol}\left(D_{n}\right)$ then since $\lambda\left(D_{n}\right)$ is the centralizer of $\rho\left(D_{n}\right)$ we have

$$
\lambda\left(t^{i} x^{j}\right)=\left(t, \phi_{(0,-1)}\right)^{i}\left(x, \phi_{(2,1)}\right)^{j}
$$

The description of $\mathcal{H}\left(D_{n}\right)$ is given in [3, Theorem 2.11]
Theorem

$$
\mathcal{H}\left(D_{n}\right)=\left\{\left\langle\left(x, \phi_{(u+1,1)}\right),\left(t, \phi_{(0,-u)}\right)\right\rangle \mid u \in \Upsilon_{n}\right\}
$$

where

$$
\Upsilon_{n}=\left\{u \in U_{n} \mid u^{2}=1\right\}
$$

the group of exponent 2 units mod n.

The size and structure of the group Υ_{n} is basically determined by the number of quadratic residues of n, which in turn is keyed to the number of prime divisors of n vis-a-vis the Chinese Remainder Theorem, and is given below.

Lemma
For $n=2^{e} p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}}, \Upsilon_{n} \cong \begin{cases}\left(\mathbb{Z}_{2}\right)^{r} & e<=1 \\ \left(\mathbb{Z}_{2}\right)^{r+1} & e=2 \\ \left(\mathbb{Z}_{2}\right)^{r+2} & e \geq 3\end{cases}$

For $u \in \Upsilon_{n}$ let

$$
\begin{aligned}
N_{u} & =\left\langle\left(x, \phi_{(u+1,1)}\right),\left(t, \phi_{(0,-u)}\right)\right\rangle \\
& =\left\langle x_{u}, t_{u}\right\rangle
\end{aligned}
$$

and we note that $N_{-1}=\rho\left(D_{n}\right)$ and $N_{1}=\lambda\left(D_{n}\right)$.
More generally, by [3, Corollary 1.13] we have, for any $N_{u} \in \mathcal{H}\left(D_{n}\right)$, that $N_{u}^{o p p}=\operatorname{Cent}_{B}\left(N_{u}\right)=N_{-u}$.

As we wish to consider the fixed rings $H_{N}=(L[N])^{G}$ where the G acting on N is $\lambda(G)$ of course, we have the following, which also comes from [3]. If we let $r=x_{1}=\lambda(x)$ and $f=t_{1}=\lambda(t)$ then
Proposition
$\lambda\left(D_{n}\right)=\langle r, f\rangle$ acts on $N_{u}=\left\langle x_{u}, t_{u}\right\rangle$ as follows:

$$
\begin{aligned}
r x_{u} r^{-1} & =x_{u} \\
r t_{u} r^{-1} & =t_{u} x_{u}^{-(u+1)} \\
f x_{u} f^{-1} & =x_{u}^{-u} \\
f t_{u} f^{-1} & =t_{u}
\end{aligned}
$$

With this we can establish the following.

Theorem

For each $N_{u} \in \mathcal{H}\left(D_{n}\right)$, none of the $H_{N_{u}}=\left(L\left[N_{u}\right]\right)^{D_{n}}$ are isomorphic as Hopf algebras.

Proof.
Let $u, v \in \Upsilon_{n}$ with $N_{u}=\left\langle x_{u}, t_{u}\right\rangle$ and $N_{v}=\left\langle x_{v}, t_{v}\right\rangle$.
If there were a $\lambda\left(D_{n}\right)$-invariant isomorphism $\psi: N_{u} \rightarrow N_{v}$ then $\psi\left(x_{u}\right)=x_{v}^{w}$ for some unit w.

But for ψ to be $\lambda\left(D_{n}\right)$-invariant, then looking at how $f=t_{1}$ acts one would need that $-u w \equiv-v w(\bmod n)$ which is impossible since $u \neq v$.
[Note: We utilize the fact that $H_{N} \cong H_{N^{\prime}}$ as Hopf-algebras iff there is a $\lambda(G)$-invariant isomorphism from N to N^{\prime}.]

Our next question is, what about the potential isomorphisms that may exist between the $H_{N_{u}}$ as K-algebras?

For this, we begin by constructing a basis for $H_{N_{u}}$ which will allow us to analyze the basic structure of them as rings.

For $u \in \Upsilon_{n}$ let

$$
\begin{aligned}
N_{u} & =\left\langle\left(x, \phi_{(u+1,1)}\right),\left(t, \phi_{(0,-u)}\right)\right\rangle \\
& =\left\langle x_{u}, t_{u}\right\rangle
\end{aligned}
$$

and we note that $N_{-1}=\rho\left(D_{n}\right)$ and $N_{1}=\lambda\left(D_{n}\right)$.
More generally, by [3, Corollary 1.13] we have, for any $N_{u} \in \mathcal{H}\left(D_{n}\right)$, that $N_{u}^{o p p}=\operatorname{Cent}_{B}\left(N_{u}\right)=N_{-u}$.

As to the case where n is even. We can utilize the enumeration discussed earlier this week.
Those N where $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$, can be parameterized as $N_{u, v}$ where $u \in \Upsilon_{n}$ and $v=1$, and, if $8 \mid n$ also for $v=\frac{n}{2}+1$ where $N_{u, 1}=N_{u} \in \mathcal{H}\left(D_{n}\right)$.
For our purposes, the we can focus on how $\lambda\left(D_{n}\right)$ acts on the characteristic index 2 subgroup which we can denote $K_{u, v}=\left\langle k_{u, v}\right\rangle$. For $r=\lambda(x)$ and $f=\lambda(t)$ we have

Proposition
$\lambda\left(D_{n}\right)=\langle r, f\rangle$ acts on $K_{u, v}=\left\langle k_{u, v}\right\rangle$ as follows:

$$
\begin{aligned}
r k_{u, v} r^{-1} & =k_{u, v}^{v} \\
f k_{u, v} f^{-1} & =k_{u, v}^{u}
\end{aligned}
$$

With this in mind, we can establish the following:

Theorem

If n even, and $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$ where $N=N_{u, v}$ for $u \in \Upsilon_{n}$ and $v=1$ or $v=\frac{n}{2}+1$ one has that there is no $\lambda\left(D_{n}\right)$ invariant isomorphism $\psi: N_{u_{1}, v_{1}} \rightarrow N_{u_{2}, v_{2}}$ unless $u_{1}=u_{2}$ and $v_{1}=v_{2}$.

Proof.
If $K_{u_{i}, v_{i}}=\left\langle k_{u_{i}, v_{i}}\right\rangle$ are the index 2 characteristic subgroups then any such $\psi: N_{u_{1}, v_{1}} \rightarrow N_{u_{2}, v_{2}}$ must map $k_{u_{1}, v_{2}} \mapsto k_{u_{2}, v_{2}}^{w}$ for some $w \in U_{n}$. However, by virtue of how $\lambda\left(D_{n}\right)$ acts, this would require

$$
\begin{aligned}
v_{1} w & \equiv v_{2} w \\
u_{1} w & \equiv u_{2} w
\end{aligned}
$$

which, since $w \in U_{n}$ implies $u_{1}=u_{2}$ and $v_{1}=v_{2}$.

Corollary

For n even, and N such that $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$ no two of the resulting fixed rings $(L[N])^{D_{n}}$ are isomorphic as Hopf-algebrs.

For those N where $\operatorname{Norm}_{B}(N) \leq W\left(X_{1}, Y_{1}\right)$, we have that $N=N_{v, r}$ where $v \in \Upsilon_{n}$ and $r \in \mathbb{Z}_{n}-\langle 2\rangle$.

Again we can focus on how $\lambda\left(D_{n}\right)$ acts on the characteristic index 2 subgroup which we can denote $K_{v, r}=\left\langle k_{v, r}\right\rangle$, specifically For $r=\lambda(x)$ and $f=\lambda(t)$ we have

Proposition
$\lambda\left(D_{n}\right)=\langle r, f\rangle$ acts on $K_{v, r}=\left\langle k_{v, r}\right\rangle$ as follows:

$$
\begin{aligned}
r k_{v, r} r^{-1} & =k_{v, r}^{v} \\
f k_{v, r} f^{-1} & =k_{v, r}^{-1}
\end{aligned}
$$

And in a similar fashion to the previous example, we can conclude that

Theorem
For $N_{v, r}$ as above, if $v_{1} \neq v_{2}$ then $N_{v_{1}, r_{1}}$ is not $\lambda\left(D_{n}\right)$-isomorphic to $N_{v_{2}, r_{2}}$ and therefore the resulting fixed rings are not isomorphic as Hopf algebras.

For later reference, we can determine $N_{u} \cap \rho\left(D_{n}\right)$ as this determines $G\left(H_{N_{u}}\right)$.

Proposition

For $N_{u}=\left\langle x_{u}, t_{u}\right\rangle \in \mathcal{H}\left(D_{n}\right)$ we have

$$
N_{u} \cap \rho\left(D_{n}\right)=\left\langle x_{u}^{\frac{n}{\operatorname{gcc}(u+1, n)}}\right\rangle
$$

which equals $\left\langle x_{-1}^{\frac{n}{\operatorname{gcd}(u+1, n)}}\right\rangle$ a cyclic group of order $\operatorname{gcd}(u+1, n)$.
Notation: As we will use it throughout the subsequent discussion we set $d_{u}=\operatorname{gcd}(u+1, n)$ for $u \in \Upsilon_{n}$, and also define $m_{u}=\frac{n}{d_{u}}$.

Basis for $H_{N_{u}}$

For a given regular N normalized by $\lambda(G)$, a basis for $H_{N}=(L[N])^{G}$ can be given that is universal in that it is defined for any L / K and N.

Proposition

Let $\alpha \in L$ be a normal basis generator for L / K with the property that $\operatorname{tr}(\alpha)=1$. Let N be a regular subgroup of $B=\operatorname{Perm}(G)$ which is normalized by $\lambda(G)$. If for each $n \in N$ we define

$$
v_{n}=\sum_{g \in G} g(\alpha) \lambda(g) n \lambda(g)^{-1}
$$

then the set $\left\{v_{n}\right\}$ is a basis for $H_{N}=(L[N])^{G}$.

Proof:

We begin by verifying that each v_{n} lies in H.
Let $t \in G$ and observe

$$
\begin{aligned}
t\left(v_{n}\right) & =\sum_{g \in G} t(g(\alpha)) \lambda(t) \lambda(g) n \lambda(g)^{-1} \lambda(t)^{-1} \\
& =\sum_{g \in G}(t g)(\alpha) \lambda(\operatorname{tg}) n \lambda(t g)^{-1} \\
& =v_{n}
\end{aligned}
$$

so that $v_{n} \in H$.
Note that $v_{e_{N}}=e_{N}$ where e_{N} is the identity of N.

As there are $|N|=|G|=\operatorname{dim}_{k}(H)$ different v_{n} we prove that they are a basis for H by proving linear independence. For computational convenience let

$$
\pi^{-1}(m)=\left\{(g, n) \in G \times N \mid \lambda(g) n \lambda(g)^{-1}=m\right\}
$$

and suppose now that $\sum_{n \in N} c_{n} v_{n}=0$ for $c_{n} \in k$, that is

$$
\begin{aligned}
0 & =\sum_{n \in N} \sum_{g \in G} c_{n} g(\alpha) \lambda(g) n \lambda(g)^{-1} \\
& =\sum_{m \in N}\left(\sum_{(g, n) \in \pi^{-1}(m)} c_{n} g(\alpha)\right) m
\end{aligned}
$$

which means that for each $m \in N$ we have

$$
\begin{equation*}
\sum_{, n) \in \pi^{-1}(m)} c_{n} g(\alpha)=0 \tag{1}
\end{equation*}
$$

but does this imply that each c_{n} in this sum is zero?

Since $\lambda(G)$ normalizes N then each $\lambda(g)$ acts as an automorphism of N.

As such, if $\left(g, n_{1}\right),\left(g, n_{2}\right) \in \pi^{-1}(m)$ then one must have $n_{1}=n_{2}$ and therefore, for all the $(g, n) \in \pi^{-1}(m)$, the g 's are all distinct.

As such the left hand side of (1) is a linear combination of distinct $g(\alpha)$ which means that for each $(g, n) \in \pi^{-1}(m)$ one has $c_{n}=0$.

And since this holds true for all $m \in N$ then all $c_{n}=0$.

We have complete information on how $\lambda\left(D_{n}\right)=N_{1}$ conjugates elements of N_{u} and thus may start constructing the v_{n} bases for each $n=t_{u}^{i} x_{u}^{j} \in N_{u}$.

We define $F=L^{\langle r\rangle}$ and for α a normal basis generator of L / K, we define $\beta=\operatorname{tr}_{L / F}(\alpha)=\sum_{b=0}^{n-1} r^{b}(\alpha)$.

We also observe that $1=\operatorname{tr}_{L / K}(\alpha)=\operatorname{tr}_{F / K}\left(\operatorname{tr}_{L / F}(\alpha)\right)=\beta+f(\beta)$ which we will use below.

Notation: As we will use it throughout the subsequent discussion we set $d_{u}=\operatorname{gcd}(u+1, n)$ for $u \in \Upsilon_{n}$, and also define $m_{u}=\frac{n}{d_{u}}$.

For $x_{u}^{j} \in N_{u}$ we have

$$
\begin{aligned}
v_{x_{u}^{j}} & =\sum_{a=0}^{1} \sum_{b=0}^{n-1}\left(f^{a} r^{b}(\alpha)\right)\left(f^{a} r^{b}\right) x_{u}^{j}\left(f^{a} r^{b}\right)^{-1} \\
& =\sum_{b=0}^{n-1}\left(r^{b}(\alpha)\right) x_{u}^{j}+\left(f r^{b}(\alpha)\right) x_{u}^{-u j} \\
& =\operatorname{tr}_{L / F}(\alpha) x_{u}^{j}+f\left(\operatorname{tr}_{L / F}(\alpha)\right) x_{u}^{-u j} \\
& =\beta x_{u}^{j}+f(\beta) x_{u}^{-u j} \\
& =\beta x_{u}^{j}+(1-\beta) x_{u}^{-u j}
\end{aligned}
$$

and we observe that, $v_{x_{u}^{j}}=x_{u}^{j}$ if and only if $j=-u j$ which is equivalent to $j(u+1) \equiv 0(\bmod n)$, namely $j \in\left\langle m_{u}\right\rangle$. i.e. $N_{u} \cap \rho\left(D_{n}\right)$.

For $t_{u} x_{u}^{j} \in N_{u}$ we have

$$
\begin{aligned}
v_{t_{u} x_{u}^{j}} & =\sum_{a=0}^{1} \sum_{b=0}^{n-1}\left(f^{a} r^{b}(\alpha)\right)\left(f^{a} r^{b}\right) t_{u} x_{u}^{j}\left(f^{a} r^{b}\right)^{-1} \\
& =\sum_{b=0}^{n-1} r^{b}(\alpha) r^{b}\left(t_{u} x_{u}^{j}\right) r^{-b}+\left(f r^{b}(\alpha)\right)\left(f r^{b}\right) t_{u} x_{u}^{j}\left(f r^{b}\right)^{-1} \\
& =\sum_{b=0}^{n-1} r^{b}(\alpha) t_{u} x_{u}^{j-b(u+1)}+f r^{b}(\alpha) t_{u} x_{u}^{b(u+1)-u j}
\end{aligned}
$$

Looking at the coefficients and group element exponents in the above sum, we see the appearance of $j-b(u+1)$ and $b(u+1)-u j$ as b varies over \mathbb{Z}_{n}.

Proposition

For $m_{u}=\frac{n}{d_{u}}$ as defined earlier, if $b \equiv b^{\prime}\left(\bmod m_{u}\right)$ then
$j-b(u+1) \equiv j-b^{\prime}(u+1)(\bmod n)$, and $b(u+1)-u j \equiv b^{\prime}(u+1)-u j(\bmod n)$.

As such, if we define $W_{e}=\left\{t \in \mathbb{Z}_{n} \mid t \equiv e\left(\bmod m_{u}\right)\right\}$ for $e=0 . . m_{u}-1$ then $\mathbb{Z}_{n}=W_{0} \cup W_{1} \cdots \cup W_{m_{u}-1}$, where, in fact, $W_{0}=\left\langle m_{u}\right\rangle$ and $W_{e}=W_{0}+e$.

For $\left\langle r^{m_{u}}\right\rangle \leq \operatorname{Gal}(L / K)$ and $F_{d_{u}}=L^{\left\langle r^{m_{u}}\right\rangle}$ let $\gamma=\operatorname{tr}_{L / F_{d_{u}}}(\alpha)=\sum_{l \in W_{0}} r^{\prime}(\alpha)$.

We have then:

and ultimately

$$
\begin{aligned}
v_{t_{u} x_{u}^{j}} & =\sum_{b=0}^{n-1} r^{b}(\alpha) t_{u} x_{u}^{j-b(u+1)}+f r^{b}(\alpha) t_{u} x_{u}^{b(u+1)-u j} \\
& =\sum_{e=0}^{m_{u}-1} r^{e}(\gamma) t_{u} x_{u}^{j-e(u+1)}+\sum_{e=0}^{m_{u}-1} f\left(r^{e}(\gamma)\right) t_{u} x_{u}^{-u j+e(u+1)}
\end{aligned}
$$

Another worthwhile point to consider is that since $\beta=\operatorname{tr}_{L / F}(\alpha)$, then $F=K(\beta)$ and β is actually a normal basis generator of F / K where $f(\beta)=1-\beta$.

As such $\operatorname{irr}_{K}(\beta)=x^{2}+a x+s$, and since $f(\beta)=1-\beta$ then we must have $a=-1$ so that $\beta=\frac{1 \pm \sqrt{1-4 s}}{2}$.

Similarly, since $\left\langle r^{m_{u}}\right\rangle$ is characteristic in $\langle r\rangle$ then $\left\langle r^{m_{u}}\right\rangle \triangleleft G a l(L / K)$. As such, since $\gamma=\operatorname{tr}_{L / F_{d}}(\alpha)$ then γ is a normal basis generator of $F_{d_{u}} / F$ and $F_{d_{u}}=F(\gamma)$.

If $n=p$ a prime, then a bit of simplification takes place in that $\Upsilon_{p}=\{ \pm 1\}$ where $u=-1$ still corresponds to the group ring $H_{\rho\left(D_{p}\right)}$ and $u=1$ corresponds to the canonical non-classical structure $H_{\lambda\left(D_{p}\right)}$.

And in particular, for $u=1$ we have $d_{1}=\operatorname{gcd}(2, p)=1$ and $m_{1}=p / 1=p$ so that $F_{d_{1}}=L$, i.e. $\gamma=\alpha$ and

$$
\begin{aligned}
v_{x_{1}^{j}} & =\beta x_{1}^{j}+(1-\beta) x_{1}^{-j} \\
v_{t_{1} x_{1}^{j}} & =\sum_{e=0}^{p-1} r^{e}(\alpha) t_{1} x_{1}^{j-2 e}+\sum_{e=0}^{p-1} f\left(r^{e}(\alpha)\right) t_{1} x_{1}^{2 e-j}
\end{aligned}
$$

Multiplying Basis Vectors of $H_{N_{u}}$

Let us consider how these basis elements multiply with each other. For example

$$
\begin{aligned}
v_{x_{u}^{j}} \cdot v_{x_{u}^{k}} & =\left(\beta x_{u}^{j}+(1-\beta) x_{u}^{-u j}\right)\left(\beta x_{u}^{k}+(1-\beta) x_{u}^{-u k}\right) \\
& =\beta^{2} x_{u}^{j+k}+\beta(1-\beta) x_{u}^{j-u k}+\beta(1-\beta) x_{u}^{k-u j}+(1-\beta)^{2} x_{u}^{-u(j+k)}
\end{aligned}
$$

which we can write as a linear combination of the other basis elements, specifically

$$
v_{x_{u}^{j}} \cdot v_{x_{u}^{k}}=(1-s) v_{x_{u}^{j+k}}-s v_{x_{u}^{-u(j+k)}}+s v_{x_{u}^{j-u k}}+s v_{x_{u}^{k-u j}}
$$

an immediate consequence of which is that $v_{x_{u}^{j}}$, and $v_{x_{u}^{k}}$ commute with each other, which isn't terribly surprising of course.

A subtle point to observe is that some of the ' n ' in the v_{n} above may be duplicates.

For example, if $u=-1$ then

$$
\begin{aligned}
v_{x_{u}^{j}} \cdot v_{x_{u}^{k}} & =(1-s) v_{x_{u}^{j+k}}-s v_{x_{u}^{-u(j+k)}}+s v_{x_{u}^{j-u k}}+s v_{x_{u}^{k-u j}} \\
& =(1-s) v_{x_{u}^{j+k}}-s v_{x_{u}^{(j+k)}}+s v_{x_{u}^{j+k}}+s v_{x_{u}^{k+j}} \\
& =v_{x_{u}^{j+k}}
\end{aligned}
$$

which is basically reflecting the fact that $v_{x_{-1}^{j}}=x_{-1}^{j}$ and so $x_{-1}^{j} x_{-1}^{k}=x_{-1}^{j+k}$ of course.

More generally, $v_{n}=n$ if and only if $n \in N \cap \rho(G)$.

In particular, we recall that $v_{x_{u}^{j}}=\beta x_{u}^{j}+(1-\beta) x_{u}^{-u j}=x_{u}^{j}$ if and only if $j \equiv-u j(\bmod n)$ which is equivalent to $j \equiv 0\left(\bmod m_{u}\right)$.

And applied to $\{j+k,-u(j+k), j-u k, k-u j\}$ we have

$$
\begin{aligned}
& j+k \equiv-u(j+k)(\bmod n) \leftrightarrow j+k \equiv 0\left(\bmod m_{u}\right) \\
& j+k \equiv j-u k(\bmod n) \leftrightarrow k \equiv 0\left(\bmod m_{u}\right) \\
& j+k \equiv k-u j(\bmod n) \leftrightarrow j \equiv 0\left(\bmod m_{u}\right) \\
& -u(j+k) \equiv j-u k(\bmod n) \leftrightarrow j \equiv 0\left(\bmod m_{u}\right) \\
& -u(j+k) \equiv k-u j(\bmod n) \leftrightarrow k \equiv 0\left(\bmod m_{u}\right) \\
& j-u k \equiv k-u j(\bmod n) \leftrightarrow j \equiv k\left(\bmod m_{u}\right)
\end{aligned}
$$

which determines how the expression of $v_{\bar{x}_{\dot{x}}^{\prime}} \cdot v_{\chi_{\chi_{u}^{k}}^{k}}$ above condenses.

The next product for $H_{N_{u}}$ to consider is this

$$
\begin{aligned}
v_{t_{u} x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}} & =\left(\sum_{c=0}^{m_{u}-1} r^{c}(\gamma) t_{u} x_{u}^{j-c(u+1)}+\sum_{c=0}^{m_{u}-1} f\left(r^{c}(\gamma)\right) t_{u} x_{u}^{-u j+c(u+1)}\right) \\
& \cdot\left(\sum_{e=0}^{m_{u}-1} r^{e}(\gamma) t_{u} x_{u}^{k-e(u+1)}+\sum_{e=0}^{m_{u}-1} f\left(r^{e}(\gamma)\right) t_{u} x_{u}^{-u k+e(u+1)}\right) \\
& =\sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} r^{c}(\gamma) r^{e}(\gamma) x_{u}^{k-j+(c-e)(u+1)} \\
& +\sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} r^{c}(\gamma) f\left(r^{e}(\gamma)\right) x_{u}^{-u k-j+(c+e)(u+1))} \\
& +\sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} f\left(r^{c}(\gamma)\right) r^{e}(\gamma) x_{u}^{k+u j-(c+e)(u+1)} \\
& +\sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} f\left(r^{c}(\gamma)\right) f\left(r^{e}(\gamma)\right) x_{u}^{u j-u k-(c-e)(u+1)}
\end{aligned}
$$

which can also be condensed a bit, and written as a linear combination of the other v_{n}.

We have

$$
\begin{aligned}
v_{t_{u} x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}} & =\sum_{h=0}^{m_{u}-1}\left(a_{h}+b_{h}\right) v_{x_{u}^{k-j+h(u+1)}}+a_{h} v_{x_{u}^{u j-u k-h(u+1)}} \\
& +\sum_{h=0}^{m_{u}-1} p_{h} v_{x_{u}^{k+u j-h(u+1)}}+p_{h} v_{x_{u}^{-u k-j+h(u+1)}}
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{tr}_{F_{d} / F}\left(r^{h}(\gamma) \gamma\right) & =a_{h}+b_{h} \beta \\
\operatorname{tr}_{F_{d} / F}\left(f\left(r^{h}(\gamma) \gamma\right)\right) & =f\left(\operatorname{tr}_{F_{d} / F}\left(r^{h}(\gamma) \gamma\right)\right)=\left(a_{h}+b_{h}\right)-b_{h} \beta \\
\operatorname{tr}_{F_{d} / F}\left(r^{h}(\gamma) f(\gamma)\right) & =p_{h}
\end{aligned}
$$

The issue is that the values of a_{h}, b_{h} and p_{h} are dependent on the extension $L / F / K$, although one can show that:

$$
\begin{aligned}
& \sum_{h=0}^{m_{u}-1} \operatorname{tr}_{F_{d} / F}\left(r^{h}(\gamma) \gamma\right)=\beta^{2}=-s+\beta \\
& \sum_{h=0}^{m_{u}-1} \operatorname{tr}_{F_{d} / F}\left(f\left(r^{h}(\gamma) \gamma\right)\right)=(1-\beta)^{2}=(1-s)-\beta \\
& \sum_{h=0}^{m_{u}-1} \operatorname{tr}_{F_{d} / F}\left(r^{h}(\gamma) f(\gamma)\right)=\beta(1-\beta)=s
\end{aligned}
$$

and so

$$
\begin{aligned}
& \sum_{h=0}^{m_{u}-1} a_{h}=-s \\
& \sum_{h=0}^{m_{u}-1} b_{h}=1 \\
& \sum_{h=0}^{m_{u}-1} p_{h}=s
\end{aligned}
$$

The other products, and their representation as (fairly simple!) linear combinations of the v_{n} are

$$
\begin{aligned}
& v_{t x_{u}^{k}} \cdot v_{x_{u}^{j}}=(1-s) v_{t x_{u}^{k+j}}+(-s) v_{t x_{u}^{-u(k+j)}}+s v_{t x_{u}^{j-u k}}+s v_{t x_{u}^{k-u j}} \\
& v_{x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}}=(1-s) v_{t x_{u}^{k-j}}+(-s) v_{t x_{u}^{-u(k-j)}}+s v_{t x_{u}^{-j-u k}}+s v_{t x_{u}^{k+u j}}
\end{aligned}
$$

and the symmetry of the above expressions in j and k leads to a number of identities

$$
\begin{aligned}
v_{t_{u} x_{u}^{k}} \cdot v_{x_{u}^{j}} & =v_{t_{u} x_{u}^{j}} \cdot v_{x_{u}^{k}} \\
v_{x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}} & =v_{t_{u} x_{u}^{-j}} \cdot v_{x_{u}^{k}} \\
v_{t_{u}} \cdot v_{x_{u}^{j}} & =v_{t_{u} x_{u}^{j}} \\
v_{x_{u}^{j}} \cdot v_{t_{u}} & =v_{t_{u} x_{u}^{-j}}
\end{aligned}
$$

In summary:

$$
\begin{aligned}
v_{x_{u}^{j}} \cdot v_{x_{u}^{k}} & =(1-s) v_{x_{u}^{j+k}}-s v_{x_{u}^{-u(j+k)}}+s v_{x_{u}^{j-u k}}+s v_{x_{u}^{k-u j}} \\
v_{t_{u} x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}} & =\sum_{h=0}^{m_{u}-1}\left(a_{h}+b_{h}\right) v_{x_{u}^{k-j+h(u+1)}}+a v_{x_{u}^{u j-u k-h(u+1)}} \\
& +\sum_{h=0}^{m-1} p_{h} v_{x_{u}^{k+u j-h(u+1)}}+p h v_{x_{u}^{-u k-j+h(u+1)}} \\
v_{t_{u} x_{u}^{k}} \cdot v_{x_{u}^{j}} & =(1-s) v_{t x_{u}^{k+j}}+(-s) v_{t x_{u}^{-u(k+j)}}+s v_{t x_{u}^{j-u k}}+s v_{t x_{u}^{k-u j}} \\
v_{x_{u}^{j}} \cdot v_{t_{u} x_{u}^{k}} & =(1-s) v_{t x_{u}^{k-j}}+(-s) v_{t x_{u}^{-u(k-j)}}+s v_{t x_{u}^{-j-u k}}+s v_{t x_{u}^{k+u j}}
\end{aligned}
$$

This leads to one immediately interesting (to me at least) consequence about the structure of $H_{N_{u}}$.

Theorem
If we define $H_{N_{u}}^{0}=\operatorname{Span}\left(\left\{v_{x_{u}^{i}}\right\}\right)$ and $H_{N_{u}}^{1}=\operatorname{Span}\left(\left\{v_{t_{u} x_{u}^{i}}\right\}\right)$ then the above facts about how the basis elements multiply implies that $H_{N_{u}}$ can be decomposed as a \mathbb{Z}_{2} graded ring $H_{N_{u}}=H_{N_{u}}^{0} \oplus H_{N_{u}}^{1}$.

Proof.
By the above product table for the v_{n}, one sees that $H_{N_{u}}^{i} H_{N_{u}}^{j} \subseteq H_{N_{u}}^{i+j}$. Indeed, one has that $v_{t_{u}} v_{x_{u}^{j}}=v_{t_{u} x_{u}^{j}}$ so that $v_{t_{u}} H_{N_{u}}^{0} \subseteq H_{N_{u}}^{1}$ and therefore $v_{t_{u}} H_{N_{u}}^{0}=H_{N_{u}}^{1}$.

A Worked Out Example in Degree 6

For $K=\mathbb{Q}$ we construct a Galois extension L / K with $G a l(L / K) \cong D_{3}$. First, define $p(x)=x^{3}-2 \in K[x]$ which has roots $w, \zeta w, \zeta^{2} w$ where $w=\sqrt[3]{2}$ and $\zeta=e^{\frac{2 \pi i}{3}}$. We have that $\operatorname{Gal}(L / K)=\langle r, f\rangle$ where

$$
\begin{aligned}
r(w) & =\zeta w \\
r(\zeta) & =\zeta \\
f(w) & =w \\
f(\zeta) & =\zeta^{2}
\end{aligned}
$$

so that $|r|=3$ and $|f|=2$ and $\operatorname{Gal}(L / K) \cong D_{3}$. One may verify that

$$
\alpha=\frac{1}{3} \sum_{i=0}^{1} \sum_{j=0}^{2} \zeta^{i} w^{j}
$$

is a normal basis generator for L / K where $\operatorname{tr}_{L / K}(\alpha)=1$.

As $F=L^{\langle r\rangle}$ then $\beta=\operatorname{tr}_{L / F}(\alpha)=\zeta+1$ is a normal basis generator for F / K where $\operatorname{tr}_{F / K}(\beta)=\beta+f(\beta)=1$ and $\operatorname{irr}_{F / K}(\beta)=x^{2}-x-1$ which means $F=\mathbb{Q}(\sqrt{-3})$.

Now, since $\Upsilon_{3}=\{1,-1\}$ then $R\left(D_{3},\left[D_{3}\right]\right)=\left\{\lambda\left(D_{3}\right), \rho\left(D_{3}\right)\right\}$ so the 'interesting' Hopf algebra action is by $N_{1}=\lambda\left(D_{3}\right)$ corresponding to $u=1 \in \Upsilon_{3}$ so that $d_{1}=\operatorname{gcd}(u+1,3)=1$ and $m_{1}=3$ and so, as observed earlier, $F_{d_{1}}=L$ and $\gamma=\alpha$.

The ' v_{n} ' basis for $H_{N_{1}}$ is

$$
\begin{aligned}
v_{x_{1}^{0}}=v_{1} & =1 \\
v_{x_{1}} & =\beta x_{1}+(1-\beta) x_{1}^{2} \\
v_{x_{1}^{2}} & =\beta x_{1}^{2}+(1-\beta) x_{1} \\
v_{t_{1}} & =\left(-\frac{1}{3} w^{2} \beta+\frac{1}{3}+\frac{1}{3} w \beta-w / 3\right) t_{1} x_{1}+\left(-\frac{1}{3} w \beta+\frac{1}{3}+\frac{1}{3} w^{2} \beta-\frac{1}{3} w^{2}\right) t_{1} x_{1}^{2} \\
& +\left(\frac{1}{3} w^{2}+w / 3+\frac{1}{3}\right) t_{1} \\
v_{t_{1} x_{1}} & =\left(\frac{2}{3} w^{2} \beta+\frac{1}{3} w \beta-w / 3+\frac{1}{3}\right) t_{1} x_{1}+\left(-\frac{1}{3} w \beta-\frac{2}{3} w^{2} \beta+\frac{2}{3} w^{2}+\frac{1}{3}\right) t_{1} x_{1}^{2} \\
& +\left(w / 3-\frac{2}{3} w^{2}+\frac{1}{3}\right) t_{1} \\
v_{t_{1} x_{1}^{2}} & =\left(-\frac{1}{3} w^{2} \beta-\frac{2}{3} w \beta+\frac{2}{3} w+\frac{1}{3}\right) t_{1} x_{1}+\left(\frac{2}{3} w \beta+\frac{1}{3} w^{2} \beta-\frac{1}{3} w^{2}+\frac{1}{3}\right) t_{1} x_{1}^{2} \\
& +\left(-\frac{2}{3} w+\frac{1}{3} w^{2}+\frac{1}{3}\right) t_{1}
\end{aligned}
$$

Using MAPLE we can compute the different 'trace pairings' for the coefficients in the different products.

$$
\begin{aligned}
& \operatorname{tr}_{L / F}\left(r^{0}(\alpha) \alpha\right)=a_{0}+b_{0} \beta=\frac{-5}{3}+\frac{5}{3} \beta \\
& \operatorname{tr}_{L / F}\left(r^{1}(\alpha) \alpha\right)=a_{1}+b_{1} \beta=\frac{1}{3}+\frac{-1}{3} \beta \\
& \operatorname{tr}_{L / F}\left(r^{2}(\alpha) \alpha\right)=a_{2}+b_{2} \beta=\frac{1}{3}+\frac{-1}{3} \beta
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{tr}_{L / F}\left(f\left(r^{0}(\alpha) \alpha\right)\right) & =\left(a_{0}+b_{0}\right)-b_{0} \beta=-\frac{5}{3} \beta \\
\operatorname{tr}_{L / F}\left(f\left(r^{1}(\alpha) \alpha\right)\right) & =\left(a_{1}+b_{1}\right)-b_{1} \beta=\frac{1}{3} \beta \\
\operatorname{tr}_{L / F}\left(f\left(r^{0}(\alpha) \alpha\right)\right) & =\left(a_{2}+b_{2}\right)-b_{2} \beta=\frac{1}{3} \beta
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}_{L / F}\left(r^{0}(\alpha) f(\alpha)\right)=p_{0}=\frac{5}{3} \\
& \operatorname{tr}_{L / F}\left(r^{1}(\alpha) f(\alpha)\right)=p_{1}=-\frac{1}{3} \\
& \operatorname{tr}_{L / F}\left(r^{2}(\alpha) f(\alpha)\right)=p_{2}=-\frac{1}{3}
\end{aligned}
$$

So for example, we have the simplest product, namely the commuting basis elements $v_{\chi_{1}}$ and $v_{x_{1}^{2}}$.

$$
v_{x_{1}} \cdot v_{x_{1}^{2}}=v_{x_{1}^{2}} \cdot v_{x_{1}}=-v_{x_{1}^{0}}+v_{x_{1}^{2}}+v_{x_{1}}
$$

and the others can be 'clustered' given the similarities one sees:

$$
\begin{aligned}
v_{x_{1}} \cdot v_{x_{1}} & =-v_{x_{1}}+2 v_{x_{1}^{0}} \\
v_{x_{1}^{2}} & \cdot v_{x_{1}^{2}}
\end{aligned}=-v_{x_{1}^{2}}+2 v_{x_{1}^{0}} .
$$

and

$$
\begin{aligned}
v_{t_{1}} \cdot v_{t} & =5 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}^{2}}-1 / 3 v_{x_{1}} \\
v_{t_{1}} \cdot v_{t_{1} x_{1}} & =5 / 3 v_{x_{1}}-1 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}^{2}} \\
v_{t_{1} x_{1}^{2}} \cdot v_{t_{1}} & =5 / 3 v_{x_{1}}-1 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}^{2}} \\
v_{t_{1}} \cdot v_{t_{1} x_{1}^{2}} & =5 / 3 v_{x_{1}^{2}}-1 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}} \\
v_{t_{1} x_{1}} \cdot v_{t_{1}} & =5 / 3 v_{x_{1}^{2}}-1 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{t_{1} x_{1}} \cdot v_{t_{1} x_{1}}=-7 / 3 v_{x_{1}^{0}}+5 / 3 v_{x_{1}^{2}}+5 / 3 v_{x_{1}} \\
& v_{t_{1} x_{1}^{2}} \cdot v_{t_{1} x_{1}^{2}}=-7 / 3 v_{x_{1}^{0}}+5 / 3 v_{x_{1}^{2}}+5 / 3 v_{x_{1}} \\
& v_{t_{1} x_{1}^{2}} \cdot v_{t_{1} x_{1}}=-7 / 3 v_{x_{1}}+11 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}^{2}} \\
& v_{t_{1} x_{1}} \cdot v_{t_{1} x_{1}^{2}}=-7 / 3 v_{x_{1}^{2}}+11 / 3 v_{x_{1}^{0}}-1 / 3 v_{x_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{x_{1}^{2}}^{2} \cdot v_{t_{1}}=v_{t_{1} x_{1}} \\
& v_{t_{1}} \cdot v_{x_{1}}=v_{t_{1} x_{1}} \\
& v_{x_{1}} \cdot v_{t_{1}}=v_{t_{1} x_{1}^{2}} \\
& v_{t_{1}} \cdot v_{x_{1}^{2}}=v_{t_{1} x_{1}^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{x_{1}^{2}} \cdot v_{t_{1} x_{1}^{2}}=-v_{t_{1}}+v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}} \\
& v_{t_{1} x_{1}} \cdot v_{x_{1}^{2}}=-v_{t_{1}}+v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}} \\
& v_{t_{1} x_{1}^{2}} \cdot v_{x_{1}}=-v_{t_{1}}+v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}} \\
& v_{x_{1}} \cdot v_{t_{1} x_{1}}=-v_{t_{1}}+v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}}
\end{aligned}
$$

The goal is to show that even though none of the $H_{N_{u}}$ are isomorphic as Hopf-algebras, they are isomorphic as K-algebras.

An ad-hoc approach/example in the D_{3} case is to utilize the v_{n} basis to construct matrix units, and therefore an explicit isomorphism $\left(K\left[\lambda\left(D_{3}\right)\right]\right)^{D_{3}}=H_{N_{1}} \rightarrow H_{N_{-1}}=K\left[\rho\left(D_{3}\right)\right]$.

This is made easier by the knowledge of the multiplication table for the $\left\{v_{n}\right\}$ we just explored.

We know that $K\left[D_{3}\right] \cong K \times K \times M_{2}(K)$ is the Wedderburn decomposition so the difficulty is in finding a 'copy' of $M_{2}(K)$ inside $H_{N_{1}}$, namely a set of matrix units.

Consider

$$
\begin{aligned}
h_{1,1} & =\frac{1}{3}\left(v_{x_{1}^{0}}-v_{x_{1}^{2}}\right) \\
h_{1,2} & =\frac{1}{6}\left(v_{t_{1}}-v_{t_{1} x_{1}}\right) \\
h_{2,1} & =\frac{1}{3}\left(v_{t_{1}}-v_{t_{1} x_{1}^{2}}\right) \\
h_{2,2} & =\frac{1}{3}\left(v_{x_{1}^{0}}-v_{x_{1}}\right)
\end{aligned}
$$

which we assert correspond to the elementary 2×2 matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

If the character values of D_{3} lie in K then the orthogonal idempotents

$$
e_{\chi_{i}}=\frac{\chi_{i}(1)}{\left|D_{3}\right|} \sum_{g \in D_{3}} \chi_{i}\left(g^{-1}\right) g
$$

lie in $K\left[D_{3}\right]$.
There are two 1 -d characters χ_{1} and χ_{2}, where $\chi_{1}(g)=1$ for all $g \in D_{3}, \chi_{2}\left(x_{1}^{i}\right)=(-1)^{i}, \chi_{2}\left(t_{1} x_{1}^{i}\right)=0$, as well as the 2-d character χ_{3} where $\chi_{3}(1)=2, \chi_{3}\left(x_{1}\right)=-1, \chi_{3}\left(x_{1}^{2}\right)=-1, \chi_{3}\left(t_{1} x_{1}^{j}\right)=0$

In particular we obtain

$$
\begin{aligned}
& e_{\chi_{1}}=\frac{1}{6}\left(t_{1} x_{1}^{2}+t_{1} x_{1}+t_{1}+x_{1}^{2}+x_{1}+1\right) \\
& e_{\chi_{2}}=\frac{1}{6}\left(-t_{1} x_{1}^{2}-t_{1} x_{1}-t_{1}+x_{1}^{2}+x_{1}+1\right) \\
& e_{\chi_{3}}=\frac{1}{3}\left(2-x_{1}-x_{1}^{2}\right)
\end{aligned}
$$

but what is quite extraordinary is how these may be represented in terms of the v-basis, namely that they actually reside in $H_{N_{1}}=\left(K\left[\lambda\left(D_{3}\right)\right]\right)^{D_{3}}$.

Specifically

$$
\begin{aligned}
e_{\chi_{1}} & =\frac{1}{6}\left(t_{1} x_{1}^{2}+t_{1} x_{1}+t_{1}+x_{1}^{2}+x_{1}+1\right) \\
& =\frac{1}{6}\left(v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}}+v_{t_{1}}+v_{x_{1}^{2}}+v_{x_{1}}+v_{x_{1}^{0}}\right) \\
e_{\chi_{2}} & =\frac{1}{6}\left(-t_{1} x_{1}^{2}-t_{1} x_{1}-t_{1}+x_{1}^{2}+x_{1}+1\right) \\
& =\frac{1}{6}\left(-v_{t_{1} x_{1}^{2}}-v_{t_{1} x_{1}}-v_{t_{1}}+v_{x_{1}^{2}}+v_{x_{1}}+v_{x_{1}^{0}}\right) \\
e_{\chi_{3}} & =\frac{1}{3}\left(2-x_{1}-x_{1}^{2}\right) \\
& =\frac{1}{3}\left(2 v_{x_{1}^{0}}-v_{x_{1}}-v_{x_{1}^{2}}\right)
\end{aligned}
$$

and the idempotent $e_{\chi_{3}}$ is used to obtain the $h_{i, j}$.

What we have then is that $H_{N_{1}}=H_{\lambda}$ (expressed in its Wedderburn form as $K \times K \times M a t_{2}(K)$) has basis $\left\{e_{\chi_{1}}, e_{\chi_{2}}, h_{1,1}, h_{1,2}, h_{2,1}, h_{2,2}\right\}$, which are all expressed in terms of the $v_{t_{1}^{i} x_{1}^{j}}$ basis vectors, explicitly

$$
\left(a, b,\left[\begin{array}{ll}
c & d \\
e & f
\end{array}\right]\right) \mapsto a e_{\chi_{1}}+b e_{\chi_{2}}+c h_{1,1}+d h_{1,2}+e h_{2,1}+f h_{2,2}
$$

where, for example, we can see where the identity element of the direct product gets mapped

$$
\left(1,1,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \mapsto e_{\chi_{1}}+e_{\chi_{2}}+h_{1,1}+h_{2,2}=v_{\chi_{1}^{0}}
$$

which is congruous with the observation earlier that $v_{x_{1}^{0}}$ is the identity element of $H_{N_{u}}$.

As an interesting computational aside, the sub-algebra $H_{N_{1}}^{0}=\operatorname{Span}\left(\left\{v_{\chi_{1}^{j}}\right\}\right)$ can also be written as
$\operatorname{Span}\left(\left\{e_{\chi_{1}}+e_{\chi_{2}}, h_{1,1}, h_{2,2}\right\}\right)$, namely as those elements of the form

$$
\left(a, a,\left[\begin{array}{ll}
b & 0 \\
0 & f
\end{array}\right]\right)
$$

and similarly $H_{N_{1}}^{1}=\operatorname{Span}\left(\left\{v_{t_{1} X_{1}^{j}}\right\}\right)=\operatorname{Span}\left(\left\{\left(e_{\chi_{1}}-e_{\chi_{2}}\right), h_{1,2}, h_{2,1}\right\}\right)$ which equals

$$
\left(a,-a,\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]\right)
$$

Going further, we can view $H_{N_{1}}=H_{\lambda}$ as a group ring in a kind of natural way. One may show that in $M_{2}(K)$ one has matrices

$$
\begin{aligned}
X & =\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \\
T & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

which can be shown satisfy the equations $X^{3}=I, T^{2}=I$ and $X T=T X^{2}$ so that $\langle X, T\rangle \cong D_{3}$ and therefore have elements (units) of the Wedderburn decomposition of $H_{N_{1}}$ which also satisfy these relations, namely $h_{X}=(1,1, X)$ and $h_{T}=(1,1, T)$.

What we would like is to show that

$$
\begin{aligned}
& \left\{1, h_{X},\left(h_{X}\right)^{2}, h_{T}, h_{T} h_{X}, h_{T}\left(h_{X}\right)^{2}\right\}= \\
& \quad\left\{(1,1, I),(1,1, X),\left(1,1, X^{2}\right),(1,1, T),(1,1, T X),\left(1,1, T X^{2}\right)\right\}
\end{aligned}
$$

are yet a different basis for $H_{N_{1}}$.
As it turns out, one must adjust h_{T}, and set it to be $(1,-1, T)$ in order to achieve linear independence, which yields the set
$\left\{(1,1, I),(1,1, X),\left(1,1, X^{2}\right),(1,-1, T),(1,-1, T X),\left(1,-1, T X^{2}\right)\right\}$
which is linearly independent.

The five 2×2 matrices $X, X^{2}, T, T X, T X^{2}$ cannot be a linearly independent subset of $M_{2}(K)$. And in terms of the basis $\left\{e_{\chi_{1}}, e_{\chi_{2}}, h_{1,1}, h_{1,2}, h_{2,1}, h_{2,2}\right\}$ one has

$$
\begin{aligned}
1 & =1 e_{\chi_{1}}+1 e_{\chi_{2}}+1 h_{1,1}+0 h_{1,2}+0 h_{2,1}+1 h_{2,2} \\
h_{X} & =1 e_{\chi_{1}}+1 e_{\chi_{2}}+0 h_{1,1}+1 h_{1,2}+(-1) h_{2,1}+(-1) h_{2,2} \\
\left(h_{X}\right)^{2} & =1 e_{\chi_{1}}+1 e_{\chi_{2}}+(-1) h_{1,1}+(-1) h_{1,2}+1 h_{2,1}+0 h_{2,2} \\
h_{T} & =1 e_{\chi_{1}}+(-1) e_{\chi_{2}}+0 h_{1,1}+1 h_{1,2}+0 h_{2,1}+1 h_{2,2} \\
h_{T} h_{X} & =1 e_{\chi_{1}}+(-1) e_{\chi_{2}}+(-1) h_{1,1}+(-1) h_{1,2}+0 h_{2,1}+1 h_{2,2} \\
h_{T}\left(h_{X}\right)^{2} & =1 e_{\chi_{1}}+(-1) e_{\chi_{2}}+1 h_{1,1}+0 h_{1,2}+(-1) h_{2,1}+(-1) h_{2,2}
\end{aligned}
$$

and, for reference, we can represent h_{X} and h_{T} in terms of the v basis.

$$
\begin{aligned}
& h_{X}=\frac{2}{3} v_{x_{1}}+\frac{1}{3} v_{x_{1}^{2}}-\frac{1}{6} v_{t_{1}}-\frac{1}{6} v_{t_{1} x_{1}}+\frac{1}{3} v_{t_{1} x_{1}^{2}} \\
& h_{T}=\frac{5}{6} v_{t_{1}}+\frac{1}{6} v_{t_{1} x_{1}}
\end{aligned}
$$

So we have (in a kind of bare-handed way) demonstrated the following:
Theorem
If $D_{3}=\left\langle x, t \mid x^{3}=t^{2}=1, x t=t x^{2}\right\rangle$ then there is a K-algebra isomorphism $\psi: K\left[D_{3}\right] \rightarrow H_{N_{1}}$ given by $\psi(x)=h_{X}$ and $\psi(t)=h_{T}$.

Idempotents in H_{N}

The similarity of the expression of the idempotents expressed in terms of the group elements and the v basis, e.g.

$$
\begin{aligned}
e_{\chi_{1}} & =\frac{1}{6}\left(t_{1} x_{1}^{2}+t_{1} x_{1}+t_{1}+x_{1}^{2}+x_{1}+1\right) \\
& =\frac{1}{6}\left(v_{t_{1} x_{1}^{2}}+v_{t_{1} x_{1}}+v_{t_{1}}+v_{x_{1}^{2}}+v_{x_{1}}+v_{x_{1}^{0}}\right)
\end{aligned}
$$

makes one wonder if there is, more generally, a direct analogue of the $e_{\chi_{i}}$ framed in terms of the v_{n} ?

Conjecture/Question: If H_{λ} contains all the central idempotents as the group ring H_{ρ} does that imply that $H_{\lambda} \cong H_{\rho}$?

Consider the following.

Definition

For $N \in R(G)$ and $\left\{v_{n}\right\}$ the basis for $H_{N}=(L[N])^{\lambda(G)}$ let

$$
v_{\chi}=\frac{\chi\left(e_{N}\right)}{|N|} \sum_{n \in N} \chi\left(n^{-1}\right) v_{n}
$$

for each irreducible character $\chi: N \rightarrow K$ of N.
We model this on the usual idempotent defintion $e_{\chi}=\frac{\chi\left(e_{N}\right)}{|N|} \sum_{n \in N} \chi\left(n^{-1}\right) n \in K[N]$.

The first question is whether these v_{χ} are similarly orthogonal idempotents. Under some assumptions on χ we can show more in fact.

Theorem
For $N \in R(G)$ and v_{χ} as defined above, if χ is real valued and all character values lie in K, and $\chi\left(\lambda(g) n \lambda(g)^{-1}\right)=\chi(n)$ for all $n \in N$ and $g \in G$ then $v_{\chi}=e_{\chi}$.

Proof:

By assumption $\chi\left(n^{-1}\right)=\overline{\chi(n)}=\chi(n)$ and so:

$$
\begin{aligned}
v_{\chi} & =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{n \in N} \chi\left(n^{-1}\right) v_{n} \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{n \in N} \sum_{g \in G} \chi\left(n^{-1}\right) g(\alpha) \lambda(g) n \lambda(g)^{-1} \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi\left(n^{-1}\right) \lambda(g) n \lambda(g)^{-1} \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi(n) \lambda(g) n \lambda(g)^{-1} \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi\left(\lambda(g) n \lambda(g)^{-1}\right) \lambda(g) n \lambda(g)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{g \in G} g(\alpha) \sum_{m \in N} \chi(m) m \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{g \in G} g(\alpha) \sum_{m \in N} \chi\left(m^{-1}\right) m \\
& =\frac{\chi\left(e_{N}\right)}{|N|} \sum_{m \in N} \chi\left(m^{-1}\right) m \\
& =e_{\chi}
\end{aligned}
$$

where the second to last line is due to the assumption that $\operatorname{tr}_{L / K}(\alpha)=1$, which completes the proof.

As a corollary, we have the following.

Corollary

For $N \in R(G)$ and v_{χ} as defined above, if χ is real valued and all character values lie in K and the action of $\lambda(G)$ on N is by inner automorphisms, then $v_{\chi}=e_{\chi}$

Proof.
If conjugation by every $\lambda(g)$ induces an inner automorphism of N then all conjugacy classes are preserved and therefore all character values are preserved.

As a result, we have some immediate examples.
If G is such that all its irreducible character values are real and lie in K then for $N=\lambda(G), \rho(G)$ one has $v_{\chi}=e_{\chi}$.

Of course, the upshot of this is that for these N the Hopf algebras H_{N} contain the same orthogonal idempotents as does $K[N]$ itself (and therefore has identical Wedderburn decomposition to that of $K[N]$?)

Corollary

If $N \in R(G)$ and χ is a real valued irreducible character of N such that all values of χ lie in K and $\chi\left(\lambda(g) n \lambda(g)^{-1}\right)=\chi(n)$ for all $n \in N$ and $g \in G$ then $e_{\chi} \in H_{N}$.

For D_{n}, the question is, for what irreducible character(s) χ do we have $\chi\left(\lambda(g) n \lambda(g)^{-1}\right)=\chi(n)$ for every $n \in N$ where $N \in \mathcal{H}\left(D_{n}\right)$?

Given $N_{u} \in \mathcal{H}\left(D_{n}\right)$ where $N_{u}=\left\langle x_{u}, t_{u}\right\rangle$ and where $\lambda(G)=\langle r, f\rangle$ acts by

$$
\begin{aligned}
r x_{u} r^{-1} & =x_{u} \\
r t_{u} r^{-1} & =t_{u} x_{u}^{-(u+1)} \\
f x_{u} f^{-1} & =x_{u}^{-u} \\
f t_{u} f^{-1} & =t_{u}
\end{aligned}
$$

we look at whether each χ is $\lambda(G)$-invariant.

If n is even then the 1 - d irreps are $\chi_{1}, \chi_{2}, \chi_{3}$, and χ_{4} where

	x_{u}^{j}	$t_{u} x_{u}^{j}$
χ_{1}	1	1
χ_{2}	1	-1
χ_{3}	$(-1)^{j}$	$(-1)^{j}$
χ_{4}	$(-1)^{j}$	$(-1)^{j+1}$

and for n odd, χ_{3} and χ_{4} aren't defined.
Clearly χ_{1} and χ_{2} are $\lambda(G)$-invariant, and for n even, $u \in \Upsilon_{n}$ must be odd, and so $u+1$ must be even and so $j-(u+1) \equiv j(\bmod 2)$ and $j \equiv-j u(\bmod 2)$ and so χ_{3} and χ_{4} are as well.

For the two dimensional irreps χ^{h} where $\chi^{h}\left(t_{u} x_{u}^{j}\right)=0$ and $\chi^{h}\left(x_{u}^{j}\right)=2 \cos \left(\frac{2 h j \pi}{n}\right)$ for $0<h<\frac{n}{2}$ the question is whether

$$
\cos \left(\frac{2 h j \pi}{n}\right)=\cos \left(\frac{-2 h u j \pi}{n}\right)
$$

for $u \in \Upsilon_{n}$?
And here is where a problem arises, namely the above equality holds (for all $h \in\left(0, \frac{n}{2}\right)$) only if $u= \pm 1$, i.e. for $N_{1}=\lambda\left(D_{n}\right)$ and $N_{-1}=\rho\left(D_{n}\right)$.

But at least we can conclude that $H_{\lambda}=H_{N_{1}} \cong H_{N_{-1}}=H_{\rho}$ for all n, not just $n=3$, or even n a prime necessarily.

Questions:
(1) Does the fact that $e_{\chi} \in H_{N_{1}}=H_{\lambda}$ for each irreducible character χ imply that $H_{N_{1}}$ has the same Wedderburn decomposition as $H_{N_{-1}}=H_{\rho}=K\left[\rho\left(D_{n}\right)\right]$?
(2) For those irreducible characters χ which are not $\lambda(G)$-invariant, are the v_{χ} idempotent? central? (even if they don't lie in $K\left[\rho\left(D_{n}\right)\right]$?)

Thank you!

F．Dalla Volta A．Caranti．
Groups that have the same holomorph as a finite perfect group．
Arxiv preprint GR， 2017.
圊 A．Caranti．
The multiple holomorphs of finite p－groups of class two．
Arxiv preprint GR， 2018.
囯 T．Kohl．
Multiple holomorphs of dihedral and quaternionic groups．
Comm．Alg．，43：4290－4304， 2015.
围 G．A．Miller．
On the multiple holomorphs of a group．
Math．Ann．，66：133－142， 1908.

