Multiple Holomorphs and Isomorphism Classes Of Hopf-Galois Structures on Dihedral Extensions

Timothy Kohl

Boston University

May 30, 2019

◆□ → < □ → < Ξ → < Ξ → Ξ < つ へ ⁰ 1/75

This is joint work with

Robert Underwood - Auburn University Montgomery

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ∽ Q @ 2/75

Hopf-Galois Theory

An extension L/K is Hopf-Galois if there is a K-Hopf algebra H and a K-algebra homomorphism $\mu : H \to End_K(L)$ such that

•
$$\mu(ab) = \sum_{(h)} \mu(h_{(1)}(a)\mu(h_{(2)})(b)$$

►
$$L^H = \{a \in L \mid \mu(h)(a) = \epsilon(h)a \ \forall h \in H\} = k$$

•
$$\mu$$
 induces $I \otimes \mu : L \# H \xrightarrow{\cong} End_{\mathcal{K}}(L)$

As is known, the Hopf-Galois structures on a Galois extension L/K with G = Gal(L/K) are in 1-1 correspondence with the regular subgroups $N \leq B = Perm(G)$ such that $\lambda(G) \leq Norm_B(N)$, where the Hopf algebra which acts is $H_N = (L[N])^{\lambda(G)}$ the fixed ring under the simultaneous action of G on scalars and on N.

This implies that |N| = |G| but does not necessarily force N to be isomorphic to G, and indeed we may define

 $R(G) = \{N \le B \mid N \text{ regular and } \lambda(G) \le Norm_B(N)\}$ $R(G, [M]) = \{N \in R(G) \mid N \cong M\}$

where [M] represents any group of cardinality |G|.

Here however, we will, in fact, consider R(G, [G]) as this includes some primordial examples of the N which may arise.

For all G, we have $N = \rho(G) \in R(G, [G])$ since $\lambda(G)$ centralizes $\rho(G)$ and thus certainly normalizes it, where $H_{\rho(G)} \cong K[G]$ the group ring, i.e. the canonical action by virtue of G being the Galois group of L/K.

If G is non-abelian then $\lambda(G) \neq \rho(G)$ and since $\lambda(G)$ obviously normalizes itself we have $\lambda(G) \in R(G, [G])$ where $H_{\lambda(G)} = H_{\lambda}$ is the so-called *canonical non-classical* structure.

The relationship we focus on, as exemplified by $\lambda(G)$ and $\rho(G)$, is that

$$Norm_B(\rho(G)) = Norm_B(\lambda(G)) = Hol(G)$$

▲□ ▶ ▲圖 ▶ ▲ 볼 ▶ ▲ 볼 ▶ ▲ 볼 ♡ � ᡤ 6/75

which leads to the discussion of the multiple holomorph of G.

For $\lambda(G) \leq B = Perm(G)$, one can ask for what other regular subgroups $N \leq B$ have the same normalizer, (holomorph) as G, namely Hol(N) = Hol(G).

The equality implies that $N \leq Hol(G)$ and $\lambda(G) \leq Hol(N)$.

If we restrict our attention to those N which are isomorphic to G then N is a conjugate of $\lambda(G)$ by regularity.

So for such an N, where $\tau \in B$ is such that $\tau\lambda(G)\tau^{-1} = N$ then

$$\tau \operatorname{Norm}_{B}(\lambda(G))\tau^{-1} = \operatorname{Norm}_{B}(\tau\lambda(G)\tau^{-1})$$
$$= \operatorname{Norm}_{B}(N)$$
$$= \operatorname{Norm}_{B}(\lambda(G))$$

which means $\tau \in Norm_B(Hol(G))$, and the converse is true as well.

Let us make a few definitions:

$$\begin{aligned} & \mathsf{NHol}(G) = \mathsf{Norm}_B(\mathsf{Hol}(G)) = \mathsf{Norm}_B(\mathsf{Norm}_B(\lambda(G))) \\ & \text{the multiple holomorph of } G \\ & \mathsf{T}(G) = \mathsf{NHol}(G)/\mathsf{Hol}(G) \\ & \mathsf{H}(G) = \{\mathsf{N} \text{ regular } \mid \mathsf{N} \cong G \text{ and } \mathsf{Hol}(\mathsf{N}) = \mathsf{Hol}(G) \} \end{aligned}$$

We observe that $\mathcal{H}(G) \subseteq R(G, [G])$, and the virtue of this is that $\mathcal{H}(G)$ (for many different G) may be readily enumerated.

We have the following basic fact(s) about T(G) and $\mathcal{H}(G)$. Proposition

Given the above definitions:

$$\begin{aligned} Orb_{\mathcal{T}(G)}(\lambda(G)) &= \mathcal{H}(G) \\ &= \{ N \text{ regular } \mid N \cong G \text{ and } N \triangleleft Hol(G) \} \\ &= Orb_{\mathcal{T}(G)}(N) \text{ for any } N \in \mathcal{H}(G) \end{aligned}$$

◆□ → < @ → < ≧ → < ≧ → ≧ < つへで 9/75</p>

and in particular $|T(G)| = |\mathcal{H}(G)|$.

The multiple holomorph of finite abelian groups was determined by G.A. Miller [4] in the early 1900's and what was utlimately discovered was that |T(G)| is trivial if G has odd order, and $|T(G)| \le 4$ in general.

Indeed, for many groups |T(G)| = 2, i.e. $\mathcal{H}(G) = \{\lambda(G), \rho(G)\}$, for example, if G is a non-abelian simple group, or complete.

Since then T(G) has been computed for other classes of groups, by Caranti for perfect groups [1], and p-groups of class two [2], and the presenter [3] for the case of dihedral groups.

And indeed, for our discussion, we shall focus on the case where $G \cong D_n$.

◆□▶ < @ ▶ < E ▶ < E ▶ E のQ ○ 10/75</p>

We examine the case where $G \cong D_n$ for $n \ge 3$ since both $\mathcal{H}(G)$ and $\mathcal{T}(G)$ are worked out in detail in [3].

We present the *n*-th dihedral group as follows:

$$D_n = \{x, t \mid x^n = 1, t^2 = 1, xt = tx^{-1}\}$$

= $\{1, x, x^2, \dots, x^{n-1}, t, tx, tx^2, \dots, tx^{n-1}\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

and we also have a presentation of $Aut(D_n)$.

Proposition For $n \ge 3$ with $D_n = \{t^a x^b | a \in \mathbb{Z}_2; b \in \mathbb{Z}_n\}$ and letting $U_n = \mathbb{Z}_n^*$, (a) $Aut(D_n) = \{\phi_{i,j} | i \in \mathbb{Z}_n; j \in U_n\}$ where

$$\phi_{i,j}(t^a x^b) = t^a x^{ia+jb}$$

$$\phi_{i_2,j_2} \circ \phi_{i_1,j_1} = \phi_{i_2+j_2i_1,j_2j_1}$$

$$\phi_{(0,1)} = I \quad the \ identity$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(b) $Aut(D_n) \cong Hol(\mathbb{Z}_n)$

The groups in $\mathcal{H}(D_n)$ are subgroups of $Hol(D_n)$ where typical elements have the form

$$(t^a x^b, \phi_{i,j})$$

and if we make the identification $\rho(t^i x^j) = (t^i x^j, I) \in Hol(D_n)$ then since $\lambda(D_n)$ is the centralizer of $\rho(D_n)$ we have

$$\lambda(t^{i}x^{j}) = (t, \phi_{(0,-1)})^{i}(x, \phi_{(2,1)})^{j}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 13/75

The description of $\mathcal{H}(D_n)$ is given in [3, Theorem 2.11] Theorem

$$\mathcal{H}(D_n) = \{ \langle (x, \phi_{(u+1,1)}), (t, \phi_{(0,-u)}) \rangle \mid u \in \Upsilon_n \}$$

where

$$\Upsilon_n = \{ u \in U_n \mid u^2 = 1 \}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

the group of exponent 2 units mod n.

The size and structure of the group Υ_n is basically determined by the number of quadratic residues of n, which in turn is keyed to the number of prime divisors of n vis-a-vis the Chinese Remainder Theorem, and is given below.

Lemma

For
$$n = 2^e p_1^{f_1} p_2^{f_2} \cdots p_r^{f_r}$$
, $\Upsilon_n \cong \begin{cases} (\mathbb{Z}_2)^r & e <= 1 \\ (\mathbb{Z}_2)^{r+1} & e = 2 \\ (\mathbb{Z}_2)^{r+2} & e \ge 3 \end{cases}$

For $u \in \Upsilon_n$ let

$$N_{u} = \langle (x, \phi_{(u+1,1)}), (t, \phi_{(0,-u)}) \rangle$$
$$= \langle x_{u}, t_{u} \rangle$$

< □ > < @ > < \ > < \ > > \ = の < ♡ < 0 / 16/75

and we note that $N_{-1} = \rho(D_n)$ and $N_1 = \lambda(D_n)$.

More generally, by [3, Corollary 1.13] we have, for any $N_u \in \mathcal{H}(D_n)$, that $N_u^{opp} = Cent_B(N_u) = N_{-u}$.

As we wish to consider the fixed rings $H_N = (L[N])^G$ where the G acting on N is $\lambda(G)$ of course, we have the following, which also comes from [3]. If we let $r = x_1 = \lambda(x)$ and $f = t_1 = \lambda(t)$ then

Proposition

 $\lambda(D_n) = \langle r, f \rangle$ acts on $N_u = \langle x_u, t_u \rangle$ as follows:

$$rx_{u}r^{-1} = x_{u}$$

$$rt_{u}r^{-1} = t_{u}x_{u}^{-(u+1)}$$

$$fx_{u}f^{-1} = x_{u}^{-u}$$

$$ft_{u}f^{-1} = t_{u}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

With this we can establish the following.

Theorem

For each $N_u \in \mathcal{H}(D_n)$, none of the $H_{N_u} = (L[N_u])^{D_n}$ are isomorphic as Hopf algebras.

Proof.

Let
$$u, v \in \Upsilon_n$$
 with $N_u = \langle x_u, t_u \rangle$ and $N_v = \langle x_v, t_v \rangle$.

If there were a $\lambda(D_n)$ -invariant isomorphism $\psi: N_u \to N_v$ then $\psi(x_u) = x_v^w$ for some unit w.

But for ψ to be $\lambda(D_n)$ -invariant, then looking at how $f = t_1$ acts one would need that $-uw \equiv -vw \pmod{n}$ which is impossible since $u \neq v$.

[Note: We utilize the fact that $H_N \cong H_{N'}$ as Hopf-algebras iff there is a $\lambda(G)$ -invariant isomorphism from N to N'.] Our next question is, what about the potential isomorphisms that may exist between the H_{N_u} as *K*-algebras?

For this, we begin by constructing a basis for H_{N_u} which will allow us to analyze the basic structure of them as rings.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For $u \in \Upsilon_n$ let

$$N_{u} = \langle (x, \phi_{(u+1,1)}), (t, \phi_{(0,-u)}) \rangle$$
$$= \langle x_{u}, t_{u} \rangle$$

< □ ▶ < @ ▶ < \ > ▲ \ > ↓ \ = り < \ > 20/75

and we note that $N_{-1} = \rho(D_n)$ and $N_1 = \lambda(D_n)$.

More generally, by [3, Corollary 1.13] we have, for any $N_u \in \mathcal{H}(D_n)$, that $N_u^{opp} = Cent_B(N_u) = N_{-u}$.

As to the case where n is even. We can utilize the enumeration discussed earlier this week.

Those *N* where $Norm_B(N) \leq W(X_0, Y_0)$, can be parameterized as $N_{u,v}$ where $u \in \Upsilon_n$ and v = 1, and, if 8|n also for $v = \frac{n}{2} + 1$ where $N_{u,1} = N_u \in \mathcal{H}(D_n)$.

For our purposes, the we can focus on how $\lambda(D_n)$ acts on the characteristic index 2 subgroup which we can denote $K_{u,v} = \langle k_{u,v} \rangle$. For $r = \lambda(x)$ and $f = \lambda(t)$ we have

Proposition

 $\lambda(D_n)=\langle r,f\rangle$ acts on $K_{u,v}=\langle k_{u,v}\rangle$ as follows:

$$rk_{u,v}r^{-1} = k_{u,v}^{v}$$
$$fk_{u,v}f^{-1} = k_{u,v}^{u}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

With this in mind, we can establish the following:

Theorem

If n even, and $Norm_B(N) \leq W(X_0, Y_0)$ where $N = N_{u,v}$ for $u \in \Upsilon_n$ and v = 1 or $v = \frac{n}{2} + 1$ one has that there is no $\lambda(D_n)$ invariant isomorphism $\psi : N_{u_1,v_1} \to N_{u_2,v_2}$ unless $u_1 = u_2$ and $v_1 = v_2$.

Proof.

If $K_{u_i,v_i} = \langle k_{u_i,v_i} \rangle$ are the index 2 characteristic subgroups then any such $\psi : N_{u_1,v_1} \to N_{u_2,v_2}$ must map $k_{u_1,v_2} \mapsto k_{u_2,v_2}^w$ for some $w \in U_n$. However, by virtue of how $\lambda(D_n)$ acts, this would require

$$v_1 w \equiv v_2 w$$
$$u_1 w \equiv u_2 w$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which, since $w \in U_n$ implies $u_1 = u_2$ and $v_1 = v_2$.

Corollary

For n even, and N such that $Norm_B(N) \leq W(X_0, Y_0)$ no two of the resulting fixed rings $(L[N])^{D_n}$ are isomorphic as Hopf-algebrs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣へで 23/75

For those N where $Norm_B(N) \leq W(X_1, Y_1)$, we have that $N = N_{v,r}$ where $v \in \Upsilon_n$ and $r \in \mathbb{Z}_n - \langle 2 \rangle$.

Again we can focus on how $\lambda(D_n)$ acts on the characteristic index 2 subgroup which we can denote $K_{\nu,r} = \langle k_{\nu,r} \rangle$, specifically For $r = \lambda(x)$ and $f = \lambda(t)$ we have

Proposition

 $\lambda(D_n) = \langle r, f \rangle$ acts on $K_{v,r} = \langle k_{v,r} \rangle$ as follows:

$$rk_{v,r}r^{-1} = k_{v,r}^{v}$$

 $fk_{v,r}f^{-1} = k_{v,r}^{-1}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

And in a similar fashion to the previous example, we can conclude that

Theorem

For $N_{v,r}$ as above, if $v_1 \neq v_2$ then N_{v_1,r_1} is not $\lambda(D_n)$ -isomorphic to N_{v_2,r_2} and therefore the resulting fixed rings are not isomorphic as Hopf algebras.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 25/75

For later reference, we can determine $N_u \cap \rho(D_n)$ as this determines $G(H_{N_u})$.

Proposition

For $N_u = \langle x_u, t_u \rangle \in \mathcal{H}(D_n)$ we have

$$N_u \cap \rho(D_n) = \langle x_u^{rac{n}{\gcd(u+1,n)}}
angle$$

which equals $\langle x_{-1}^{\frac{n}{gcd(u+1,n)}} \rangle$ a cyclic group of order gcd(u+1,n).

Notation: As we will use it throughout the subsequent discussion we set $d_u = gcd(u+1, n)$ for $u \in \Upsilon_n$, and also define $m_u = \frac{n}{d_u}$.

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 26/75</p>

Basis for H_{N_u}

For a given regular N normalized by $\lambda(G)$, a basis for $H_N = (L[N])^G$ can be given that is universal in that it is defined for any L/K and N.

Proposition

Let $\alpha \in L$ be a normal basis generator for L/K with the property that $tr(\alpha) = 1$. Let N be a regular subgroup of B = Perm(G)which is normalized by $\lambda(G)$. If for each $n \in N$ we define

$$v_n = \sum_{g \in G} g(\alpha) \lambda(g) n \lambda(g)^{-1}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ○ Q (27/75

then the set $\{v_n\}$ is a basis for $H_N = (L[N])^G$.

Proof:

We begin by verifying that each v_n lies in H.

Let $t \in G$ and observe

$$t(v_n) = \sum_{g \in G} t(g(\alpha))\lambda(t)\lambda(g)n\lambda(g)^{-1}\lambda(t)^{-1}$$
$$= \sum_{g \in G} (tg)(\alpha)\lambda(tg)n\lambda(tg)^{-1}$$
$$= v_n$$

<□ > < @ > < E > < E > E の Q C 28/75

so that $v_n \in H$.

Note that $v_{e_N} = e_N$ where e_N is the identity of N.

As there are $|N| = |G| = dim_k(H)$ different v_n we prove that they are a basis for H by proving linear independence. For computational convenience let

$$\pi^{-1}(m) = \{(g,n) \in G \times N \mid \lambda(g)n\lambda(g)^{-1} = m\}$$

and suppose now that $\sum_{n\in \textit{N}} c_n v_n = 0$ for $c_n \in \textit{k},$ that is

$$0 = \sum_{n \in N} \sum_{g \in G} c_n g(\alpha) \lambda(g) n \lambda(g)^{-1}$$
$$= \sum_{m \in N} \left(\sum_{(g,n) \in \pi^{-1}(m)} c_n g(\alpha) \right) m$$

which means that for each $m \in N$ we have

$$\sum_{(g,n)\in\pi^{-1}(m)}c_ng(\alpha)=0$$
(1)

but does this imply that each c_n in this sum is zero?

Since $\lambda(G)$ normalizes N then each $\lambda(g)$ acts as an automorphism of N.

As such, if $(g, n_1), (g, n_2) \in \pi^{-1}(m)$ then one must have $n_1 = n_2$ and therefore, for all the $(g, n) \in \pi^{-1}(m)$, the g's are all distinct.

As such the left hand side of (1) is a linear combination of *distinct* $g(\alpha)$ which means that for each $(g, n) \in \pi^{-1}(m)$ one has $c_n = 0$.

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 30/75</p>

And since this holds true for all $m \in N$ then all $c_n = 0$.

We have complete information on how $\lambda(D_n) = N_1$ conjugates elements of N_u and thus may start constructing the v_n bases for each $n = t_u^i x_u^j \in N_u$.

We define $F = L^{\langle r \rangle}$ and for α a normal basis generator of L/K, we define $\beta = tr_{L/F}(\alpha) = \sum_{b=0}^{n-1} r^b(\alpha)$.

We also observe that $1 = tr_{L/K}(\alpha) = tr_{F/K}(tr_{L/F}(\alpha)) = \beta + f(\beta)$ which we will use below.

Notation: As we will use it throughout the subsequent discussion we set $d_u = gcd(u+1, n)$ for $u \in \Upsilon_n$, and also define $m_u = \frac{n}{d_u}$.

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 31/75</p>

For $x_u^j \in N_u$ we have

$$\begin{aligned} \mathbf{v}_{\mathbf{x}_{u}^{j}} &= \sum_{a=0}^{1} \sum_{b=0}^{n-1} (f^{a} r^{b}(\alpha)) (f^{a} r^{b}) \mathbf{x}_{u}^{j} (f^{a} r^{b})^{-1} \\ &= \sum_{b=0}^{n-1} (r^{b}(\alpha)) \mathbf{x}_{u}^{j} + (fr^{b}(\alpha)) \mathbf{x}_{u}^{-uj} \\ &= tr_{L/F}(\alpha) \mathbf{x}_{u}^{j} + f(tr_{L/F}(\alpha)) \mathbf{x}_{u}^{-uj} \\ &= \beta \mathbf{x}_{u}^{j} + f(\beta) \mathbf{x}_{u}^{-uj} \\ &= \beta \mathbf{x}_{u}^{j} + (1-\beta) \mathbf{x}_{u}^{-uj} \end{aligned}$$

and we observe that, $v_{x_u^j} = x_u^j$ if and only if j = -uj which is equivalent to $j(u+1) \equiv 0 \pmod{n}$, namely $j \in \langle m_u \rangle$. i.e. $N_u \cap \rho(D_n)$.

For $t_u x_u^j \in N_u$ we have

$$\begin{aligned} v_{t_{u}x_{u}^{j}} &= \sum_{a=0}^{1} \sum_{b=0}^{n-1} (f^{a}r^{b}(\alpha))(f^{a}r^{b})t_{u}x_{u}^{j}(f^{a}r^{b})^{-1} \\ &= \sum_{b=0}^{n-1} r^{b}(\alpha)r^{b}(t_{u}x_{u}^{j})r^{-b} + (fr^{b}(\alpha))(fr^{b})t_{u}x_{u}^{j}(fr^{b})^{-1} \\ &= \sum_{b=0}^{n-1} r^{b}(\alpha)t_{u}x_{u}^{j-b(u+1)} + fr^{b}(\alpha)t_{u}x_{u}^{b(u+1)-uj} \end{aligned}$$

Looking at the coefficients and group element exponents in the above sum, we see the appearance of j - b(u+1) and b(u+1) - uj as b varies over \mathbb{Z}_n .

<□ ▶ < @ ▶ < E ▶ < E ▶ 2 ∽ Q ↔ 33/75

Proposition

For
$$m_u = \frac{n}{d_u}$$
 as defined earlier, if $b \equiv b' \pmod{m_u}$ then
 $j - b(u+1) \equiv j - b'(u+1) \pmod{n}$, and
 $b(u+1) - uj \equiv b'(u+1) - uj \pmod{n}$.

As such, if we define $W_e = \{t \in \mathbb{Z}_n \mid t \equiv e \pmod{m_u}\}$ for $e = 0...m_u - 1$ then $\mathbb{Z}_n = W_0 \cup W_1 \cdots \cup W_{m_u-1}$, where, in fact, $W_0 = \langle m_u \rangle$ and $W_e = W_0 + e$.

< □ ▶ < @ ▶ < \ > ▶ < \ > ▶ = りへで 34/75

For
$$\langle r^{m_u} \rangle \leq Gal(L/K)$$
 and $F_{d_u} = L^{\langle r^{m_u} \rangle}$ let $\gamma = tr_{L/F_{d_u}}(\alpha) = \sum_{l \in W_0} r^l(\alpha).$

We have then:

and ultimately

$$v_{t_{u}x_{u}^{j}} = \sum_{b=0}^{n-1} r^{b}(\alpha) t_{u} x_{u}^{j-b(u+1)} + fr^{b}(\alpha) t_{u} x_{u}^{b(u+1)-uj}$$
$$= \sum_{e=0}^{m_{u}-1} r^{e}(\gamma) t_{u} x_{u}^{j-e(u+1)} + \sum_{e=0}^{m_{u}-1} f(r^{e}(\gamma)) t_{u} x_{u}^{-uj+e(u+1)}$$

Another worthwhile point to consider is that since $\beta = tr_{L/F}(\alpha)$, then $F = K(\beta)$ and β is actually a normal basis generator of F/Kwhere $f(\beta) = 1 - \beta$.

As such $irr_{\mathcal{K}}(\beta) = x^2 + ax + s$, and since $f(\beta) = 1 - \beta$ then we must have a = -1 so that $\beta = \frac{1 \pm \sqrt{1-4s}}{2}$.

Similarly, since $\langle r^{m_u} \rangle$ is characteristic in $\langle r \rangle$ then $\langle r^{m_u} \rangle \triangleleft Gal(L/K)$.

As such, since $\gamma = tr_{L/F_d}(\alpha)$ then γ is a normal basis generator of F_{d_u}/F and $F_{d_u} = F(\gamma)$.

If n = p a prime, then a bit of simplification takes place in that $\Upsilon_p = \{\pm 1\}$ where u = -1 still corresponds to the group ring $H_{\rho(D_p)}$ and u = 1 corresponds to the canonical non-classical structure $H_{\lambda(D_p)}$.

And in particular, for u = 1 we have $d_1 = gcd(2, p) = 1$ and $m_1 = p/1 = p$ so that $F_{d_1} = L$, i.e. $\gamma = \alpha$ and

$$v_{x_1^j} = \beta x_1^j + (1 - \beta) x_1^{-j}$$
$$v_{t_1 x_1^j} = \sum_{e=0}^{p-1} r^e(\alpha) t_1 x_1^{j-2e} + \sum_{e=0}^{p-1} f(r^e(\alpha)) t_1 x_1^{2e-j}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Multiplying Basis Vectors of H_{N_u}

Let us consider how these basis elements multiply with each other. For example

$$\begin{aligned} \mathsf{v}_{\mathsf{x}_u^j} \cdot \mathsf{v}_{\mathsf{x}_u^k} &= (\beta \mathsf{x}_u^j + (1 - \beta) \mathsf{x}_u^{-uj}) (\beta \mathsf{x}_u^k + (1 - \beta) \mathsf{x}_u^{-uk}) \\ &= \beta^2 \mathsf{x}_u^{j+k} + \beta (1 - \beta) \mathsf{x}_u^{j-uk} + \beta (1 - \beta) \mathsf{x}_u^{k-uj} + (1 - \beta)^2 \mathsf{x}_u^{-u(j+k)} \end{aligned}$$

which we can write as a linear combination of the other basis elements, specifically

$$v_{x_{u}^{j}} \cdot v_{x_{u}^{k}} = (1-s)v_{x_{u}^{j+k}} - sv_{x_{u}^{-u(j+k)}} + sv_{x_{u}^{j-uk}} + sv_{x_{u}^{k-uj}}$$

an immediate consequence of which is that $v_{x_u^j}$, and $v_{x_u^k}$ commute with each other, which isn't terribly surprising of course.

A subtle point to observe is that some of the 'n' in the v_n above may be duplicates.

For example, if u = -1 then

$$egin{aligned} & v_{x_u^j} \cdot v_{x_u^k} = (1-s) v_{x_u^{j+k}} - s v_{x_u^{-u(j+k)}} + s v_{x_u^{j-uk}} + s v_{x_u^{k-uj}} \ &= (1-s) v_{x_u^{j+k}} - s v_{x_u^{(j+k)}} + s v_{x_u^{j+k}} + s v_{x_u^{k+j}} \ &= v_{x_u^{j+k}} \end{aligned}$$

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 39/75</p>

which is basically reflecting the fact that $v_{x_{-1}^j} = x_{-1}^j$ and so $x_{-1}^j x_{-1}^k = x_{-1}^{j+k}$ of course.

More generally, $v_n = n$ if and only if $n \in N \cap \rho(G)$.

In particular, we recall that $v_{x_u^j} = \beta x_u^j + (1 - \beta) x_u^{-uj} = x_u^j$ if and only if $j \equiv -uj \pmod{n}$ which is equivalent to $j \equiv 0 \pmod{m_u}$. And applied to $\{j + k, -u(j + k), j - uk, k - uj\}$ we have

$$j + k \equiv -u(j + k) \pmod{n} \Leftrightarrow j + k \equiv 0 \pmod{m_u}$$

$$j + k \equiv j - uk \pmod{n} \Leftrightarrow k \equiv 0 \pmod{m_u}$$

$$j + k \equiv k - uj \pmod{n} \Leftrightarrow j \equiv 0 \pmod{m_u}$$

$$-u(j + k) \equiv j - uk \pmod{n} \Leftrightarrow j \equiv 0 \pmod{m_u}$$

$$-u(j + k) \equiv k - uj \pmod{n} \Leftrightarrow k \equiv 0 \pmod{m_u}$$

$$j - uk \equiv k - uj \pmod{n} \Leftrightarrow j \equiv k \pmod{m_u}$$

which determines how the expression of $v_{X_{u}^{j^{*}}} \cdot v_{X_{u}^{j^{*}}}$ above condenses $\sim 40/75$

The next product for H_{N_u} to consider is this

$$\begin{aligned} v_{t_{u}x_{u}^{j}} \cdot v_{t_{u}x_{u}^{k}} &= \left(\sum_{c=0}^{m_{u}-1} r^{c}(\gamma) t_{u} x_{u}^{j-c(u+1)} + \sum_{c=0}^{m_{u}-1} f(r^{c}(\gamma)) t_{u} x_{u}^{-uj+c(u+1)}\right) \\ &\cdot \left(\sum_{e=0}^{m_{u}-1} r^{e}(\gamma) t_{u} x_{u}^{k-e(u+1)} + \sum_{e=0}^{m_{u}-1} f(r^{e}(\gamma)) t_{u} x_{u}^{-uk+e(u+1)}\right) \\ &= \sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} r^{c}(\gamma) r^{e}(\gamma) x_{u}^{k-j+(c-e)(u+1)} \\ &+ \sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} r^{c}(\gamma) f(r^{e}(\gamma)) x_{u}^{-uk-j+(c+e)(u+1))} \\ &+ \sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} f(r^{c}(\gamma)) r^{e}(\gamma) x_{u}^{k+uj-(c+e)(u+1)} \\ &+ \sum_{c=0}^{m_{u}-1} \sum_{e=0}^{m_{u}-1} f(r^{c}(\gamma)) f(r^{e}(\gamma)) x_{u}^{uj-uk-(c-e)(u+1)} \end{aligned}$$

which can also be condensed a bit, and written as a linear combination of the other v_n .

We have

$$v_{t_{u}x_{u}^{j}} \cdot v_{t_{u}x_{u}^{k}} = \sum_{h=0}^{m_{u}-1} (a_{h} + b_{h}) v_{x_{u}^{k-j+h(u+1)}} + a_{h} v_{x_{u}^{uj-uk-h(u+1)}} + \sum_{h=0}^{m_{u}-1} p_{h} v_{x_{u}^{k+uj-h(u+1)}} + p_{h} v_{x_{u}^{-uk-j+h(u+1)}}$$

where

$$tr_{F_d/F}(r^h(\gamma)\gamma) = a_h + b_h\beta$$

$$tr_{F_d/F}(f(r^h(\gamma)\gamma)) = f(tr_{F_d/F}(r^h(\gamma)\gamma)) = (a_h + b_h) - b_h\beta$$

$$tr_{F_d/F}(r^h(\gamma)f(\gamma)) = p_h$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ → ♡ < ♡ 41/75

The issue is that the values of a_h , b_h and p_h are dependent on the extension L/F/K, although one can show that:

$$\sum_{h=0}^{m_u-1} tr_{F_d/F}(r^h(\gamma)\gamma) = \beta^2 = -s + \beta$$
$$\sum_{h=0}^{m_u-1} tr_{F_d/F}(f(r^h(\gamma)\gamma)) = (1-\beta)^2 = (1-s) - \beta$$
$$\sum_{h=0}^{m_u-1} tr_{F_d/F}(r^h(\gamma)f(\gamma)) = \beta(1-\beta) = s$$

and so

$$\sum_{h=0}^{m_u-1} a_h = -s \ \sum_{h=0}^{m_u-1} b_h = 1 \ \sum_{h=0}^{m_u-1} p_h = s$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ⑦ Q @ 42/75

The other products, and their representation as (fairly simple!) linear combinations of the v_n are

$$egin{aligned} & \mathsf{v}_{t_u imes_u^k} \cdot \mathsf{v}_{x_u^j} = (1-s) \mathsf{v}_{tx_u^{k+j}} + (-s) \mathsf{v}_{tx_u^{-u(k+j)}} + s \mathsf{v}_{tx_u^{j-uk}} + s \mathsf{v}_{tx_u^{k-uj}} \ & \mathsf{v}_{x_u^j} \cdot \mathsf{v}_{t_u imes_u^k} = (1-s) \mathsf{v}_{tx_u^{k-j}} + (-s) \mathsf{v}_{tx_u^{-u(k-j)}} + s \mathsf{v}_{tx_u^{-j-uk}} + s \mathsf{v}_{tx_u^{k+uj}} \end{aligned}$$

and the symmetry of the above expressions in j and k leads to a number of identities

$$\begin{split} & \mathsf{v}_{t_u x_u^k} \cdot \mathsf{v}_{x_u^j} = \mathsf{v}_{t_u x_u^j} \cdot \mathsf{v}_{x_u^k} \\ & \mathsf{v}_{x_u^j} \cdot \mathsf{v}_{t_u x_u^k} = \mathsf{v}_{t_u x_u^{-j}} \cdot \mathsf{v}_{x_u^k} \\ & \mathsf{v}_{t_u} \cdot \mathsf{v}_{x_u^j} = \mathsf{v}_{t_u x_u^j} \\ & \mathsf{v}_{t_u} \cdot \mathsf{v}_{x_u^j} = \mathsf{v}_{t_u x_u^j} \\ & \mathsf{v}_{x_u^j} \cdot \mathsf{v}_{t_u} = \mathsf{v}_{t_u x_u^{-j}} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In summary:

$$\begin{split} \mathbf{v}_{x_{u}^{j}} \cdot \mathbf{v}_{x_{u}^{k}} &= (1-s)\mathbf{v}_{x_{u}^{j+k}} - s\mathbf{v}_{x_{u}^{-u(j+k)}} + s\mathbf{v}_{x_{u}^{j-uk}} + s\mathbf{v}_{x_{u}^{k-uj}} \\ \mathbf{v}_{t_{u}x_{u}^{j}} \cdot \mathbf{v}_{t_{u}x_{u}^{k}} &= \sum_{h=0}^{m_{u}-1} (a_{h} + b_{h})\mathbf{v}_{x_{u}^{k-j+h(u+1)}} + a_{h}\mathbf{v}_{x_{u}^{uj-uk-h(u+1)}} \\ &+ \sum_{h=0}^{m_{u}-1} p_{h}\mathbf{v}_{x_{u}^{k+uj-h(u+1)}} + p_{h}\mathbf{v}_{x_{u}^{-uk-j+h(u+1)}} \\ \mathbf{v}_{t_{u}x_{u}^{k}} \cdot \mathbf{v}_{x_{u}^{j}} &= (1-s)\mathbf{v}_{tx_{u}^{k+j}} + (-s)\mathbf{v}_{tx_{u}^{-u(k+j)}} + s\mathbf{v}_{tx_{u}^{j-uk}} + s\mathbf{v}_{tx_{u}^{k-uj}} \\ \mathbf{v}_{x_{u}^{j}} \cdot \mathbf{v}_{t_{u}x_{u}^{k}} &= (1-s)\mathbf{v}_{tx_{u}^{k-j}} + (-s)\mathbf{v}_{tx_{u}^{-u(k-j)}} + s\mathbf{v}_{tx_{u}^{-j-uk}} + s\mathbf{v}_{tx_{u}^{k+uj}} \end{split}$$

<ロ > < 部 > < 言 > < 言 > う < で 44/75

This leads to one immediately interesting (to me at least) consequence about the structure of H_{N_u} .

Theorem

If we define $H_{N_u}^0 = Span(\{v_{x_u^i}\})$ and $H_{N_u}^1 = Span(\{v_{t_u x_u^i}\})$ then the above facts about how the basis elements multiply implies that H_{N_u} can be decomposed as a \mathbb{Z}_2 graded ring $H_{N_u} = H_{N_u}^0 \oplus H_{N_u}^1$.

Proof.

By the above product table for the v_n , one sees that $H_{N_u}^i H_{N_u}^j \subseteq H_{N_u}^{i+j}$. Indeed, one has that $v_{t_u} v_{x_u^j} = v_{t_u x_u^j}$ so that $v_{t_u} H_{N_u}^0 \subseteq H_{N_u}^1$ and therefore $v_{t_u} H_{N_u}^0 = H_{N_u}^1$.

A Worked Out Example in Degree 6

For $K = \mathbb{Q}$ we construct a Galois extension L/K with $Gal(L/K) \cong D_3$. First, define $p(x) = x^3 - 2 \in K[x]$ which has roots w, ζw , $\zeta^2 w$ where $w = \sqrt[3]{2}$ and $\zeta = e^{\frac{2\pi i}{3}}$. We have that $Gal(L/K) = \langle r, f \rangle$ where

$$r(w) = \zeta w$$
$$r(\zeta) = \zeta$$
$$f(w) = w$$
$$f(\zeta) = \zeta^{2}$$

so that |r| = 3 and |f| = 2 and $Gal(L/K) \cong D_3$. One may verify that

$$\alpha = \frac{1}{3} \sum_{i=0}^{1} \sum_{j=0}^{2} \zeta^{i} w^{j}$$

is a normal basis generator for L/K where $tr_{L/K}(\alpha) = 1$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ◆ 46/75

As $F = L^{\langle r \rangle}$ then $\beta = tr_{L/F}(\alpha) = \zeta + 1$ is a normal basis generator for F/K where $tr_{F/K}(\beta) = \beta + f(\beta) = 1$ and $irr_{F/K}(\beta) = x^2 - x - 1$ which means $F = \mathbb{Q}(\sqrt{-3})$.

Now, since $\Upsilon_3 = \{1, -1\}$ then $R(D_3, [D_3]) = \{\lambda(D_3), \rho(D_3)\}$ so the 'interesting' Hopf algebra action is by $N_1 = \lambda(D_3)$ corresponding to $u = 1 \in \Upsilon_3$ so that $d_1 = gcd(u+1,3) = 1$ and $m_1 = 3$ and so, as observed earlier, $F_{d_1} = L$ and $\gamma = \alpha$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The ' v_n ' basis for H_{N_1} is

$$\begin{split} \mathbf{v}_{\mathbf{x}_{1}^{0}} &= \mathbf{v}_{1} = 1 \\ \mathbf{v}_{\mathbf{x}_{1}} &= \beta \mathbf{x}_{1} + (1 - \beta) \mathbf{x}_{1}^{2} \\ \mathbf{v}_{\mathbf{x}_{1}^{2}} &= \beta \mathbf{x}_{1}^{2} + (1 - \beta) \mathbf{x}_{1} \\ \mathbf{v}_{t_{1}} &= \left(-\frac{1}{3} \, w^{2} \beta + \frac{1}{3} + \frac{1}{3} \, w \beta - w / 3 \right) t_{1} \mathbf{x}_{1} + \left(-\frac{1}{3} \, w \beta + \frac{1}{3} + \frac{1}{3} \, w^{2} \beta - \frac{1}{3} \, w^{2} \right) t_{1} \mathbf{x}_{1}^{2} \\ &+ \left(\frac{1}{3} \, w^{2} + w / 3 + \frac{1}{3} \right) t_{1} \\ \mathbf{v}_{t_{1}\mathbf{x}_{1}} &= \left(\frac{2}{3} \, w^{2} \beta + \frac{1}{3} \, w \beta - w / 3 + \frac{1}{3} \right) t_{1} \mathbf{x}_{1} + \left(-\frac{1}{3} \, w \beta - \frac{2}{3} \, w^{2} \beta + \frac{2}{3} \, w^{2} + \frac{1}{3} \right) t_{1} \mathbf{x}_{1}^{2} \\ &+ \left(w / 3 - \frac{2}{3} \, w^{2} + \frac{1}{3} \right) t_{1} \\ \mathbf{v}_{t_{1}\mathbf{x}_{1}^{2}} &= \left(-\frac{1}{3} \, w^{2} \beta - \frac{2}{3} \, w \beta + \frac{2}{3} \, w + \frac{1}{3} \right) t_{1} \mathbf{x}_{1} + \left(\frac{2}{3} \, w \beta + \frac{1}{3} \, w^{2} \beta - \frac{1}{3} \, w^{2} + \frac{1}{3} \right) t_{1} \mathbf{x}_{1}^{2} \\ &+ \left(-\frac{2}{3} \, w + \frac{1}{3} \, w^{2} + \frac{1}{3} \right) t_{1} \end{split}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ↔ 48/75

Using MAPLE we can compute the different 'trace pairings' for the coefficients in the different products.

$$tr_{L/F}(r^{0}(\alpha)\alpha) = a_{0} + b_{0}\beta = \frac{-5}{3} + \frac{5}{3}\beta$$
$$tr_{L/F}(r^{1}(\alpha)\alpha) = a_{1} + b_{1}\beta = \frac{1}{3} + \frac{-1}{3}\beta$$
$$tr_{L/F}(r^{2}(\alpha)\alpha) = a_{2} + b_{2}\beta = \frac{1}{3} + \frac{-1}{3}\beta$$

$$tr_{L/F}(f(r^{0}(\alpha)\alpha)) = (a_{0} + b_{0}) - b_{0}\beta = -\frac{5}{3}\beta$$
$$tr_{L/F}(f(r^{1}(\alpha)\alpha)) = (a_{1} + b_{1}) - b_{1}\beta = \frac{1}{3}\beta$$
$$tr_{L/F}(f(r^{0}(\alpha)\alpha)) = (a_{2} + b_{2}) - b_{2}\beta = \frac{1}{3}\beta$$

$$tr_{L/F}(r^{0}(\alpha)f(\alpha)) = p_{0} = \frac{5}{3}$$
$$tr_{L/F}(r^{1}(\alpha)f(\alpha)) = p_{1} = -\frac{1}{3}$$
$$tr_{L/F}(r^{2}(\alpha)f(\alpha)) = p_{2} = -\frac{1}{3}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

So for example, we have the simplest product, namely the commuting basis elements v_{x_1} and $v_{x_2^2}.$

$$v_{x_1} \cdot v_{x_1^2} = v_{x_1^2} \cdot v_{x_1} = -v_{x_1^0} + v_{x_1^2} + v_{x_1}$$

and the others can be 'clustered' given the similarities one sees:

$$\begin{split} \mathbf{v}_{\mathbf{x}_{1}} \cdot \mathbf{v}_{\mathbf{x}_{1}} &= -\mathbf{v}_{\mathbf{x}_{1}} + 2\mathbf{v}_{\mathbf{x}_{1}^{0}} \\ \mathbf{v}_{\mathbf{x}_{1}^{2}} \cdot \mathbf{v}_{\mathbf{x}_{1}^{2}} &= -\mathbf{v}_{\mathbf{x}_{1}^{2}} + 2\mathbf{v}_{\mathbf{x}_{1}^{0}} \\ \mathbf{v}_{\mathbf{x}_{1}^{2}} \cdot \mathbf{v}_{t_{1}\mathbf{x}_{1}} &= -\mathbf{v}_{t_{1}\mathbf{x}_{1}} + 2\mathbf{v}_{t_{1}} \\ \mathbf{v}_{t_{1}\mathbf{x}_{1}} \cdot \mathbf{v}_{\mathbf{x}_{1}} &= -\mathbf{v}_{t_{1}\mathbf{x}_{1}} + 2\mathbf{v}_{t_{1}} \\ \mathbf{v}_{\mathbf{x}_{1}} \cdot \mathbf{v}_{t_{1}\mathbf{x}_{1}^{2}} &= -\mathbf{v}_{t_{1}\mathbf{x}_{1}^{2}} + 2\mathbf{v}_{t_{1}} \\ \mathbf{v}_{t_{1}\mathbf{x}_{1}^{2}} \cdot \mathbf{v}_{\mathbf{x}_{1}^{2}} &= -\mathbf{v}_{t_{1}\mathbf{x}_{1}^{2}} + 2\mathbf{v}_{t_{1}} \end{split}$$

and

$$\begin{split} v_{t_1} \cdot v_t &= 5/3 v_{x_1^0} - 1/3 v_{x_1^2} - 1/3 v_{x_1} \\ v_{t_1} \cdot v_{t_1 x_1} &= 5/3 v_{x_1} - 1/3 v_{x_1^0} - 1/3 v_{x_1^2} \\ v_{t_1 x_1^2} \cdot v_{t_1} &= 5/3 v_{x_1} - 1/3 v_{x_1^0} - 1/3 v_{x_1^2} \\ v_{t_1} \cdot v_{t_1 x_1^2} &= 5/3 v_{x_1^2} - 1/3 v_{x_1^0} - 1/3 v_{x_1} \\ v_{t_1 x_1} \cdot v_{t_1} &= 5/3 v_{x_1^2} - 1/3 v_{x_1^0} - 1/3 v_{x_1} \end{split}$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ 差 · ⑦ Q (~ 50/75)

and

$$\begin{split} v_{t_1x_1} \cdot v_{t_1x_1} &= -7/3v_{x_1^0} + 5/3v_{x_1^2} + 5/3v_{x_1} \\ v_{t_1x_1^2} \cdot v_{t_1x_1^2} &= -7/3v_{x_1^0} + 5/3v_{x_1^2} + 5/3v_{x_1} \\ v_{t_1x_1^2} \cdot v_{t_1x_1} &= -7/3v_{x_1} + 11/3v_{x_1^0} - 1/3v_{x_1^2} \\ v_{t_1x_1} \cdot v_{t_1x_1^2} &= -7/3v_{x_1^2} + 11/3v_{x_1^0} - 1/3v_{x_1} \end{split}$$

and

$$\begin{split} v_{x_1^2} \cdot v_{t_1} &= v_{t_1 x_1} \\ v_{t_1} \cdot v_{x_1} &= v_{t_1 x_1} \\ v_{x_1} \cdot v_{t_1} &= v_{t_1 x_1^2} \\ v_{t_1} \cdot v_{x_1^2} &= v_{t_1 x_1^2} \end{split}$$

 $\quad \text{and} \quad$

$$\begin{split} & \mathsf{v}_{x_1^2} \cdot \mathsf{v}_{t_1 x_1^2} = -\mathsf{v}_{t_1} + \mathsf{v}_{t_1 x_1^2} + \mathsf{v}_{t_1 x_1} \\ & \mathsf{v}_{t_1 x_1} \cdot \mathsf{v}_{x_1^2} = -\mathsf{v}_{t_1} + \mathsf{v}_{t_1 x_1^2} + \mathsf{v}_{t_1 x_1} \\ & \mathsf{v}_{t_1 x_1^2} \cdot \mathsf{v}_{x_1} = -\mathsf{v}_{t_1} + \mathsf{v}_{t_1 x_1^2} + \mathsf{v}_{t_1 x_1} \\ & \mathsf{v}_{x_1} \cdot \mathsf{v}_{t_1 x_1} = -\mathsf{v}_{t_1} + \mathsf{v}_{t_1 x_1^2} + \mathsf{v}_{t_1 x_1} \end{split}$$

< □ > < □ > < □ > < ≧ > < ≧ > ≧ → のへで 51/75

The goal is to show that even though none of the H_{N_u} are isomorphic as Hopf-algebras, they are isomorphic as *K*-algebras.

An ad-hoc approach/example in the D_3 case is to utilize the v_n basis to construct matrix units, and therefore an explicit isomorphism $(\mathcal{K}[\lambda(D_3)])^{D_3} = H_{N_1} \rightarrow H_{N_{-1}} = \mathcal{K}[\rho(D_3)].$

This is made easier by the knowledge of the multiplication table for the $\{v_n\}$ we just explored.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 つくで 52/75</p>

We know that $K[D_3] \cong K \times K \times M_2(K)$ is the Wedderburn decomposition so the difficulty is in finding a 'copy' of $M_2(K)$ inside H_{N_1} , namely a set of matrix units.

Consider

$$h_{1,1} = \frac{1}{3}(v_{x_1^0} - v_{x_1^2})$$

$$h_{1,2} = \frac{1}{6}(v_{t_1} - v_{t_1x_1})$$

$$h_{2,1} = \frac{1}{3}(v_{t_1} - v_{t_1x_1^2})$$

$$h_{2,2} = \frac{1}{3}(v_{x_1^0} - v_{x_1})$$

which we assert correspond to the elementary 2×2 matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

If the character values of D_3 lie in K then the orthogonal idempotents

$$e_{\chi_i} = rac{\chi_i(1)}{|D_3|} \sum_{g \in D_3} \chi_i(g^{-1})g$$

lie in $K[D_3]$.

There are two 1-d characters χ_1 and χ_2 , where $\chi_1(g) = 1$ for all $g \in D_3$, $\chi_2(x_1^i) = (-1)^i$, $\chi_2(t_1x_1^i) = 0$, as well as the 2-d character χ_3 where $\chi_3(1) = 2$, $\chi_3(x_1) = -1$, $\chi_3(x_1^2) = -1$, $\chi_3(t_1x_1^j) = 0$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 · ○ Q ○ 54/75</p>

In particular we obtain

$$\begin{split} e_{\chi_1} &= \frac{1}{6}(t_1 x_1^2 + t_1 x_1 + t_1 + x_1^2 + x_1 + 1) \\ e_{\chi_2} &= \frac{1}{6}(-t_1 x_1^2 - t_1 x_1 - t_1 + x_1^2 + x_1 + 1) \\ e_{\chi_3} &= \frac{1}{3}(2 - x_1 - x_1^2) \end{split}$$

but what is quite extraordinary is how these may be represented in terms of the v-basis, namely that they actually reside in $H_{N_1} = (K[\lambda(D_3)])^{D_3}$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 55/75</p>

Specifically

$$egin{aligned} e_{\chi_1} &= rac{1}{6}(t_1x_1^2 + t_1x_1 + t_1 + x_1^2 + x_1 + 1) \ &= rac{1}{6}(v_{t_1x_1^2} + v_{t_1x_1} + v_{t_1} + v_{x_1^2} + v_{x_1} + v_{x_1^0}) \end{aligned}$$

$$egin{aligned} e_{\chi_2} &= rac{1}{6} ig(-t_1 x_1^2 - t_1 x_1 - t_1 + x_1^2 + x_1 + 1 ig) \ &= rac{1}{6} ig(-v_{t_1 x_1^2} - v_{t_1 x_1} - v_{t_1} + v_{x_1^2} + v_{x_1} + v_{x_1^0} ig) \end{aligned}$$

$$e_{\chi_3} = \frac{1}{3}(2 - x_1 - x_1^2)$$
$$= \frac{1}{3}(2v_{x_1^0} - v_{x_1} - v_{x_1^2})$$

and the idempotent e_{χ_3} is used to obtain the $h_{i,j}$.

What we have then is that $H_{N_1} = H_{\lambda}$ (expressed in its Wedderburn form as $K \times K \times Mat_2(K)$) has basis $\{e_{\chi_1}, e_{\chi_2}, h_{1,1}, h_{1,2}, h_{2,1}, h_{2,2}\}$, which are all expressed in terms of the $v_{t_1^i \times t_1^j}$ basis vectors, explicitly

$$\begin{pmatrix} a, b, \begin{bmatrix} c & d \\ e & f \end{bmatrix} \end{pmatrix} \mapsto ae_{\chi_1} + be_{\chi_2} + ch_{1,1} + dh_{1,2} + eh_{2,1} + fh_{2,2}$$

where, for example, we can see where the identity element of the direct product gets mapped

$$egin{pmatrix} 1,1, egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \mapsto e_{\chi_1} + e_{\chi_2} + h_{1,1} + h_{2,2} = v_{x_1^0} \end{split}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ E · ○ Q ○ 57/75</p>

which is congruous with the observation earlier that $v_{x_1^0}$ is the identity element of H_{N_u} .

As an interesting computational aside, the sub-algebra $H_{N_1}^0 = Span(\{v_{\chi_1^j}\})$ can also be written as $Span(\{e_{\chi_1} + e_{\chi_2}, h_{1,1}, h_{2,2}\})$, namely as those elements of the form

$$\begin{pmatrix} a, a, \begin{bmatrix} b & 0 \\ 0 & f \end{bmatrix}$$

and similarly $H_{N_1}^1 = Span(\{v_{t_1x_1^j}\}) = Span(\{(e_{\chi_1} - e_{\chi_2}), h_{1,2}, h_{2,1}\})$ which equals

$$\begin{pmatrix} a, -a, \begin{bmatrix} 0 & c \\ d & 0 \end{bmatrix}$$
)

◆□ ▶ ◆ □ ▶ \bullet ■ ▶ ◆ □ ▶ \bullet ■ ▶ ◆ □ ▶ \bullet ■ ■ ▶ \bullet ■ ■

Going further, we can view $H_{N_1} = H_{\lambda}$ as a group ring in a kind of natural way. One may show that in $M_2(K)$ one has matrices

$$X = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

which can be shown satisfy the equations $X^3 = I$, $T^2 = I$ and $XT = TX^2$ so that $\langle X, T \rangle \cong D_3$ and therefore have elements (units) of the Wedderburn decomposition of H_{N_1} which also satisfy these relations, namely $h_X = (1, 1, X)$ and $h_T = (1, 1, T)$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 · ○ Q ○ 59/75</p>

What we would like is to show that

$$\{1, h_X, (h_X)^2, h_T, h_T h_X, h_T (h_x)^2\} = \{(1, 1, I), (1, 1, X), (1, 1, X^2), (1, 1, T), (1, 1, TX), (1, 1, TX^2)\}$$

are yet a different basis for H_{N_1} .

As it turns out, one must adjust h_T , and set it to be (1, -1, T) in order to achieve linear independence, which yields the set

 $\{(1,1,I),(1,1,X),(1,1,X^2),(1,-1,T),(1,-1,TX),(1,-1,TX^2)\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

which is linearly independent.

The five 2 × 2 matrices X, X², T, TX, TX² cannot be a linearly independent subset of $M_2(K)$. And in terms of the basis $\{e_{\chi_1}, e_{\chi_2}, h_{1,1}, h_{1,2}, h_{2,1}, h_{2,2}\}$ one has

$$\begin{split} 1 &= 1e_{\chi_1} + 1e_{\chi_2} + 1h_{1,1} + 0h_{1,2} + 0h_{2,1} + 1h_{2,2} \\ h_X &= 1e_{\chi_1} + 1e_{\chi_2} + 0h_{1,1} + 1h_{1,2} + (-1)h_{2,1} + (-1)h_{2,2} \\ (h_X)^2 &= 1e_{\chi_1} + 1e_{\chi_2} + (-1)h_{1,1} + (-1)h_{1,2} + 1h_{2,1} + 0h_{2,2} \\ h_T &= 1e_{\chi_1} + (-1)e_{\chi_2} + 0h_{1,1} + 1h_{1,2} + 0h_{2,1} + 1h_{2,2} \\ h_T h_X &= 1e_{\chi_1} + (-1)e_{\chi_2} + (-1)h_{1,1} + (-1)h_{1,2} + 0h_{2,1} + 1h_{2,2} \\ h_T (h_X)^2 &= 1e_{\chi_1} + (-1)e_{\chi_2} + 1h_{1,1} + 0h_{1,2} + (-1)h_{2,1} + (-1)h_{2,2} \end{split}$$

and, for reference, we can represent h_X and h_T in terms of the v basis.

$$h_X = \frac{2}{3}v_{x_1} + \frac{1}{3}v_{x_1^2} - \frac{1}{6}v_{t_1} - \frac{1}{6}v_{t_1x_1} + \frac{1}{3}v_{t_1x_1^2}$$
$$h_T = \frac{5}{6}v_{t_1} + \frac{1}{6}v_{t_1x_1}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ > ⑦ < ♡ 62/75

So we have (in a kind of bare-handed way) demonstrated the following:

Theorem

If $D_3 = \langle x, t | x^3 = t^2 = 1, xt = tx^2 \rangle$ then there is a K-algebra isomorphism $\psi : K[D_3] \to H_{N_1}$ given by $\psi(x) = h_X$ and $\psi(t) = h_T$.

Idempotents in *H_N*

The similarity of the expression of the idempotents expressed in terms of the group elements and the v basis, e.g.

$$e_{\chi_1} = \frac{1}{6}(t_1x_1^2 + t_1x_1 + t_1 + x_1^2 + x_1 + 1)$$

= $\frac{1}{6}(v_{t_1x_1^2} + v_{t_1x_1} + v_{t_1} + v_{x_1^2} + v_{x_1} + v_{x_1^0})$

makes one wonder if there is, more generally, a direct analogue of the e_{χ_i} framed in terms of the v_n ?

Conjecture/Question: If H_{λ} contains all the central idempotents as the group ring H_{ρ} does that imply that $H_{\lambda} \cong H_{\rho}$? Consider the following.

Definition For $N \in R(G)$ and $\{v_n\}$ the basis for $H_N = (L[N])^{\lambda(G)}$ let

$$v_{\chi} = \frac{\chi(e_N)}{|N|} \sum_{n \in N} \chi(n^{-1}) v_n$$

for each irreducible character $\chi: N \to K$ of N.

We model this on the usual idempotent definition $e_{\chi} = \frac{\chi(e_N)}{|N|} \sum_{n \in N} \chi(n^{-1})n \in K[N].$

The first question is whether these v_{χ} are similarly orthogonal idempotents. Under some assumptions on χ we can show more in fact.

Theorem

For $N \in R(G)$ and v_{χ} as defined above, if χ is real valued and all character values lie in K, and $\chi(\lambda(g)n\lambda(g)^{-1}) = \chi(n)$ for all $n \in N$ and $g \in G$ then $v_{\chi} = e_{\chi}$.

Proof:

By assumption $\chi(n^{-1}) = \overline{\chi(n)} = \chi(n)$ and so:

$$\begin{aligned} v_{\chi} &= \frac{\chi(e_N)}{|N|} \sum_{n \in N} \chi(n^{-1}) v_n \\ &= \frac{\chi(e_N)}{|N|} \sum_{n \in N} \sum_{g \in G} \chi(n^{-1}) g(\alpha) \lambda(g) n \lambda(g)^{-1} \\ &= \frac{\chi(e_N)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi(n^{-1}) \lambda(g) n \lambda(g)^{-1} \\ &= \frac{\chi(e_N)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi(n) \lambda(g) n \lambda(g)^{-1} \\ &= \frac{\chi(e_N)}{|N|} \sum_{g \in G} g(\alpha) \sum_{n \in N} \chi(\lambda(g) n \lambda(g)^{-1}) \lambda(g) n \lambda(g)^{-1} \end{aligned}$$

$$= \frac{\chi(e_N)}{|N|} \sum_{g \in G} g(\alpha) \sum_{m \in N} \chi(m)m$$
$$= \frac{\chi(e_N)}{|N|} \sum_{g \in G} g(\alpha) \sum_{m \in N} \chi(m^{-1})m$$
$$= \frac{\chi(e_N)}{|N|} \sum_{m \in N} \chi(m^{-1})m$$
$$= e_{\chi}$$

where the second to last line is due to the assumption that $tr_{L/K}(\alpha) = 1$, which completes the proof.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

As a corollary, we have the following.

Corollary

For $N \in R(G)$ and v_{χ} as defined above, if χ is real valued and all character values lie in K and the action of $\lambda(G)$ on N is by inner automorphisms, then $v_{\chi} = e_{\chi}$

Proof.

If conjugation by every $\lambda(g)$ induces an inner automorphism of N then all conjugacy classes are preserved and therefore all character values are preserved.

< □ ▶ < @ ▶ < \ > ▲ \ > ↓ \ = りへで 68/75

As a result, we have some immediate examples.

If G is such that all its irreducible character values are real and lie in K then for $N = \lambda(G), \rho(G)$ one has $v_{\chi} = e_{\chi}$.

Of course, the upshot of this is that for these N the Hopf algebras H_N contain the same orthogonal idempotents as does K[N] itself (and therefore has identical Wedderburn decomposition to that of K[N]?)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Corollary

If $N \in R(G)$ and χ is a real valued irreducible character of N such that all values of χ lie in K and $\chi(\lambda(g)n\lambda(g)^{-1}) = \chi(n)$ for all $n \in N$ and $g \in G$ then $e_{\chi} \in H_N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�♡ 70/75

For D_n , the question is, for what irreducible character(s) χ do we have $\chi(\lambda(g)n\lambda(g)^{-1}) = \chi(n)$ for every $n \in N$ where $N \in \mathcal{H}(D_n)$? Given $N_u \in \mathcal{H}(D_n)$ where $N_u = \langle x_u, t_u \rangle$ and where $\lambda(G) = \langle r, f \rangle$ acts by

$$rx_{u}r^{-1} = x_{u}$$

$$rt_{u}r^{-1} = t_{u}x_{u}^{-(u+1)}$$

$$fx_{u}f^{-1} = x_{u}^{-u}$$

$$ft_{u}f^{-1} = t_{u}$$

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 71/75</p>

we look at whether each χ is $\lambda(G)$ -invariant.

If *n* is even then the 1-d irreps are χ_1 , χ_2 , χ_3 , and χ_4 where

	x _u ^j	$t_u x_u^j$
χ_1	1	1
χ2	1	-1
χз	$(-1)^{j}$	$(-1)^{j}$
χ4	$(-1)^{j}$	$(-1)^{j+1}$

and for *n* odd, χ_3 and χ_4 aren't defined.

Clearly χ_1 and χ_2 are $\lambda(G)$ -invariant, and for n even, $u \in \Upsilon_n$ must be odd, and so u + 1 must be even and so $j - (u + 1) \equiv j \pmod{2}$ and $j \equiv -ju \pmod{2}$ and so χ_3 and χ_4 are as well.

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 72/75</p>

For the two dimensional irreps χ^h where $\chi^h(t_u x_u^j) = 0$ and $\chi^h(x_u^j) = 2\cos(\frac{2hj\pi}{n})$ for $0 < h < \frac{n}{2}$ the question is whether

$$\cos\left(\frac{2hj\pi}{n}\right) = \cos\left(\frac{-2huj\pi}{n}\right)$$

for $u \in \Upsilon_n$?

And here is where a problem arises, namely the above equality holds (for all $h \in (0, \frac{n}{2})$) only if $u = \pm 1$, i.e. for $N_1 = \lambda(D_n)$ and $N_{-1} = \rho(D_n)$.

But at least we can conclude that $H_{\lambda} = H_{N_1} \cong H_{N_{-1}} = H_{\rho}$ for all n, not just n = 3, or even n a prime necessarily.

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ○ Q (P 73/75

Questions:

(1) Does the fact that $e_{\chi} \in H_{N_1} = H_{\lambda}$ for each irreducible character χ imply that H_{N_1} has the same Wedderburn decomposition as $H_{N_{-1}} = H_{\rho} = K[\rho(D_n)]$?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(2) For those irreducible characters χ which are not $\lambda(G)$ -invariant, are the v_{χ} idempotent? central? (even if they don't lie in $K[\rho(D_n)]$?)

Thank you!

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ≧ のへで 75/75

🖡 F. Dalla Volta A. Caranti.

Groups that have the same holomorph as a finite perfect group.

Arxiv preprint GR, 2017.

A. Caranti.

The multiple holomorphs of finite p-groups of class two. *Arxiv preprint GR*, 2018.

T. Kohl.

Multiple holomorphs of dihedral and quaternionic groups. *Comm. Alg.*, 43:4290–4304, 2015.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G.A. Miller.

On the multiple holomorphs of a group. *Math. Ann.*, 66:133–142, 1908.